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Chapter 1

Introduction

1.1 Chromatic Polynomials

Let G = (V,E) be a graph. A proper k-coloring of G is a map c : V → [k]
such that c(v) 6= c(w) whenever {v, w} ∈ E. The number χG(q) of proper
q-colorings of G is a polynomial function in q called the chromatic polyno-
mial of G. Motivated by the Four Color Problem conjectured in 1852, the
chromatic polynomial was introduced by Birkhoff [Bir12] for planar graphs
and generally by Whitney [Whi32] and well-studied for over a century. De-
spite the fact that it did not give a simple proof for 4-CT, the researches
on chromatic polynomials gave rise to new fields in mathematics, with many
theorems and, certainly, many new conjectures. One of the most notorious
conjectures is the unimodality conjecture by Read [Rea68] in 1968, which
states that the signless coefficients of the chromatic polynomial of any graph
is unimodal. It was conjectured later by Hoggar [Hog74] that these coeffi-
cients are log-concave, which is a stronger property than unimodality.

Observe the chromatic polynomial once more. We denote by G\e and G/e
the deletion and contraction of a graph G = (V,E) at an edge e ∈ E,
respectively. For any proper k-colorings of G\e, the two vertices of e are
colored either same or differently. These two kinds of colorings correspond
to the proper k-colorings of G/e resp. G. Therefore we have the recurrence
relation

χG(q) = χG\e(q)− χG/e(q) (1.1)

with the initial condition χ(V,∅)(q) = q|V |.

For an edge subset F ⊆ E, denote by G〈F 〉 = (V, F ) the subgraph of G

7



8 CHAPTER 1. INTRODUCTION

spanned by F , and k(G〈F 〉) the number of connected components of G〈F 〉.
Then qk(G〈F 〉) counts the q-colorings of G such that the two vertices of e ∈ F
are colored same. By the inclusion-exclusion principle, we have

χG(q) =
∑
F⊆E

(−1)|F |qk(G〈F 〉). (1.2)

These two formulae ensure that χG(q) is indeed a polynomial function in q,
and moreover, they show that the chromatic polynomial and the unimodality
and log-concavity conjectures can be generalized to matroids.

1.2 Unimodality and Log-Concavity

A sequence a0, . . . , ad of real numbers is called unimodal if there is an i ∈
{0, . . . , d} such that a0 ≤ a1 ≤ . . . ≤ ai ≥ . . . ≥ ad and logarithmically
concave (log-concave for short) if a2

i ≥ ai−1ai+1 for any i ∈ {1, . . . , d −
1}. It is clear that log-concavity implies unimodality if all elements ai are
positive. We refer to the surveys [Sta89; Bre88; Brä15] for various problems
and techniques.

Unimodal and log-concave sequences occur frequently in combinatorics. Bi-
nomial coefficients

(
n
k

)
, Stirling numbers of the first kind

[
n
k

]
and the second

kind
{
n
k

}
and Eulerian numbers

〈
n
k

〉
are known to be log-concave hence uni-

modal for fixed n and k = 1, . . . , n. By a theorem of Newton, if all roots of a
polynomial p(x) =

∑n
i=0 aix

i are real, then (ak/
(
n
k

)
)k is log-concave, implying

that (ak)k is log-concave. The Eulerian polynomial, the characteristic poly-
nomial of a real symmetric matrix, the matching polynomial of a graph, and
more generally, the independence polynomial of a claw-free graph are proven
to be real-rooted, therefore, their coefficients form log-concave sequences.

The unimodality and log-concavity are important for classification, as they
give a lot of inequalities. However, these properties behave mysterious, many
sequences are proven to be unimodal or log-concave, but many are disproved
and many are only conjectured to be so.

The f -vectors of convex polytopes were conjectured to be unimodal in late
1950’s, and proven by Björner to be increased on the first quarter and de-
creased on the last quarter. However, a simplicial polytope of dimension
20 was constructed whose f -vector fails to be unimodal, see [Zie12]. These
results are consequences of the g-theorem, whose proof is based on the hard
Lefschetz property of the singular cohomology ring of the toric variety as-
sociated to the polytope [Sta80]. The g-theorem implies the unimodality of
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h-vectors of simplicial polytopes, in particular, the Ehrhart h∗-vector of a
Gorenstein lattice polytope with a regular unimodular triangulation [BR07].

Another celebrated example for log-concavity is the Aleksandrov-Fenchel in-
equality in convex geometry, see [Sch14]. Two combinatorial applications for
matroids and posets are given in [Sta81]. It corresponds to the Khovanskii-
Teissier inequality for intersection numbers, which is based the classical
Hodge index theorem. These are applications of the Hodge-Riemann re-
lations.

The research on the Read-Hoggar conjecture on the unimodality and log-
concavity of coefficients of a chromatic polynomial had little progress in a
half century until the breakthrough by Huh [Huh12]. Later in [HK12], the
log-concavity was proven for the coefficients of characteristic polynomials
of representable matroids by using the Khovanskii-Teissier inequality. In
[AHK18], a working Hodge theory beyond the case of realizable matroids
was developed, and finally the Heron-Rota-Welsh conjecture was proven.

1.3 Combinatorial Hodge Theory

Let A•(X) =
⊕d

k=0A
k(X) be a graded R-algebra associated to some object

X of “dimension” d, equipped with a graded bilinear pairing P : A•(X) ×
Ad−•(X) → R and a graded linear map L : A•(X) → A•+1(X). Let K be
a convex cone in the space of linear operators on A•(X). We expect the
following properties from the triple (A•(X), P,K):

(PD) For every 0 ≤ k ≤ bd
2
c, the bilinear pairing P : Ak(X)×Ad−k(X)→ R

is non-degenerate.

(HL) For every 0 ≤ k ≤ bd
2
c and every L ∈ K, the composition Ld−2k :

Ak(X)→ Ad−k(X) is bijective.

(HR) For every 0 ≤ k ≤ bd
2
c and every L ∈ K, the bilinear form

Ak(X)× Ak(X)→ R, (x1, x2) 7→ (−1)kP (x1, L
d−2kx2)

is symmetric, and is positive definite on the kernel of Ld−2k+1 : Ak(X)→
Ad−k+1(X).

The properties (PD), (HL) and (HR) are called Poincaré duality, hard Lef-
schetz property and Hodge-Riemann relations, respectively. Together they
are called the Kähler package. These properties are enjoyed by the cohomol-
ogy on a compact Kähler manifold. Huh believed that behind any log-concave



10 CHAPTER 1. INTRODUCTION

sequence that appears in nature, there is such a “Hodge structure” respon-
sible for the log-concavity [Huh16]. The following example is McMullen’s
polytope algebra [McM89].

Example 1.1 (polytope algebra). Let Π be the abelian group with genera-
tors [P ], one for each polytope P ⊂ Rd, which satisfy the following relations:

1. [P1 ∪ P2] + [P1 ∩ P2] = [P1] + [P2] whenever P1 ∪ P2 is a polytope,

2. [P + t] = [P ] for every point t ∈ Rd, and

3. [∅] = 0.

We define a multiplication in Π by the Minkowski sum [P1] · [P2] = [P1 +P2],
and this makes Π a commutative ring with 1 = [point] and 0 = [∅], called
the polytope algebra. One can show that ([P ]− 1)d+1 = 0 for any nonempty
polytope P . This makes the definition of logarithm on Π\{0} in the usual
way possible, which satisfy the usual rule log[P1 + P2] = log[P1] + log[P2].
As a translating invariant valuation, the Lebesgue measure on Rn defines a
surjective group homomorphism Vol : Π → R, [P ] 7→ Vol(P ). Moreover, we
have the identity

Vol(P ) =
1

d!
Vol((log[P ])d)

and it can be generalized to Minkowski’s mixed volume Vol(P1, . . . , Pd) =
Vol(log[P1] · · · log[Pd]) of polytopes P1, . . . , Pd.
We say that the polytopes P1 and P2 are equivalent if P1 � P2 � P1, where
P1 � P2 means that P1 is a Minkowski summand of some positive multiple of
P2. LetK(P ) be the set of all polytopes equivalent to a given polytope P . For
each integer k > 0, let Πk(P ) ⊆ Π be the subgroup generated by all elements
of the form p1p2 · · · pk, where pi is the logarithm of a polytope in K(P ). In
this sense, K(P ) forms a convex cone. In [McM93] it is proven that when
P is a d-dimensional simple polytope, the triple (Π•(P ),Vol, K(P )) satisfies
the desired properties: Let p be the logarithm of a simple polytope in K(P ),
and let 1 ≤ k ≤ d

2
.

(PD) The multiplication in Π defines a non-degenerate bilinear pairing Πk(P )×
Πd−k(P )→ R, (x, y) 7→ Vol(xy).

(HL) The multiplication by pd−2k defines an isomorphism of abelian groups
Πk(P )→ Πd−k(P ), x 7→ pd−2kx.

(HR) The multiplication by pd−2k defines a symmetric bilinear form

Πk(P )× Πk(P )→ R, (x1, x2) 7→ (−1)kVol(pd−2kx1x2)
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that is positive definite on the kernel of pd−2k+1 : Πk(P )→ Πd−k+1(P ).

The group Πk(P ) can be equipped with a finite dimensional R-vector space
structure. The hard Lefschetz theorem (HL) is the main ingredient in the
proof of g-conjecture for simple polytopes [Sta80]. The Hodge-Riemann
relations (HR) in the spacial case k = 1 is essentially equivalent to the
Aleksandrov-Fenchel inequality on mixed volumes of convex bodies

Vol(p1p1p3 · · · pd)Vol(p2p2p3 · · · pd) ≤ Vol(p1p2p3 · · · pd)2.

1.4 Structure of the Thesis

The Heron-Rota-Welsh conjecture was first proven in [AHK18], and the proof
in this thesis is based on [BES19], without using order filters. The surveys
[Bak18; Huh16; Kat16] provide a nice introduction on these papers. For back-
ground in various fields, we refer to [Oxl06; Wel10; Whi86; Whi92; Whi87]
for matroid theory, [Zie12] for polytopes, [CLO13] for classical algebraic ge-
ometry, [CLS11] for toric varieties and [MS15] for tropical geometry.

In Chapter 2, we present the essential and motivational statements for ma-
troids. In §2.1, the necessary definitions and facts for matroids are given
with an emphasis on lattices of flats and matroid polytopes. In §2.2, the ex-
pressions of characteristic polynomials of matroids are presented. We state
the log-concavity conjecture for Whitney numbers, which are coefficients of
characteristic polynomials and are shown to be alternating in sign, and its
relation to the log-concavity of the f -vector of the independence complex.
In §3.3, a fan structure called the Bergman fan is defined on a matroid. We
follow its motivation in tropical geometry that the Bergman fan is a simpli-
cial fan structure on the tropicalization of a realization of a matroid, and it
can be generalized to matroids that are not linear and behaves like a linear
space.

In Chapter 3, we focus on the Chow ring of a matroid M , which is the Chow
cohomology ring of the toric variety associated to the Bergman fan ΣM of
M . In §3.1, we define the Chow ring A•(Σ) and the Minkowski weights
MW•(Σ) of a smooth fan Σ, which are analogue to the cohomology and ho-
mology rings in algebraic topology. We give the properties of Chow rings and
Minkowski weights, including the Kronecker duality, and the Poincaré dual-
ity for complete fans. These properties enable the definition of a cap product
and a degree map

∫
. In §3.2, we consider the Chow ring A•(M) = A•(ΣM)

of a matroid M and study the properties of A•(M) and its presentations as



12 CHAPTER 1. INTRODUCTION

A•FY(M) and A•∇(M). A monomial R-basis of A•∇(M), called the nested basis
is given. In §3.3, it is shown that nested basis acquires a combinatorial inter-
pretation as a certain family of matroid quotients called the relative nested

quotients. Moreover, the cap product map Ac∇(M)
·∩∆M−−−→ MWd−c(ΣM) in-

duces a bijection between the nested basis of A•∇(M) and the set of relative
nested quotients of M , and the bijection respects linear independence.

In Chapter 4, a Hodge theory of matroids sufficient to prove the log-concavity
conjecture is developed. The first component of the Kähler package for
A•(M), called the Poincaré duality, is proven in Section 4.1. We show that
the Chow ring A•(M) is the ∆M -transport of MW•(ΣAn) ∼= A•(ΣAn), that
is, A•(M) ∼= A•(ΣAn)/Ann(∆M). And the transport structure preserves
the Poincaré duality property. As a consequence, the cap product map

Ac(M)
·∩∆M−−−→ MWd−c(ΣM) is indeed an isomorphism of R-vector spaces.

In Section 4.2, we get a combinatorial expression for the volume polynomial
of A•∇(M). This polynomial is shown to be Lorentzian, which satisfies prop-
erties analogue to the Hodge-Riemann relations. In Section 4.3, the Hodge-
Riemann relations (HR) and the hard Lefschetz property (HL) for A•(M)
in degree at most 1 are proven. From Section 4.3, we get some element in
the ample cone KM for which (HR) is satisfied, it allows the implication of
(HR) by (HL). By the facts that tensor products preserve Poincaré duality
property and Hodge-Riemann relations, and that the (HR) of transports im-
plies (HL), the required properties follow from induction on the rank of M
by A•(M)/Ann(xF ) ∼= (A(M |F )⊗ A(M/F ))•.

At last, in Section 4.4, we show that the Kähler package of A•(M) of degree at
most one implies the log-concavity of Whitney numbers. It is implied by the
log-concavity of coefficients µk(M) of the reduced characteristic polynomial
χM(q) = χM(q)/(q − 1). The coefficient µk(M) is exactly the number of
initial descending k-step flags of nonempty proper flats of M , and we have
µk(M) =

∫
M
αd−kβk. The log-concavity follows then from induction on the

rank of M by truncation and the initial case is given by (HL) and (HR) of
(A•(M),

∫
M
,KM) in degree at most 1.



Chapter 2

Matroids

2.1 Axioms, Operations and Representations

“Anyone who has worked with matroids has come away with the conviction
that matroids are one of the richest and most useful mathematical ideas of
our day. It is as if one were to condense all trends of present day mathemat-
ics onto a single structure, a feat that any would a priori deem impossible,
were it not for the fact that matroids do exist.” So wrote Rota in [Rot08].
Indeed, due to the unique “cryptomorphism” – the very nontrivial equiva-
lence between axiom systems from wholly different mathematical pedigrees,
the manipulability and the wide generality and applicability to many well-
behaved combinatorial structures, matroids become one of the most elegant
structures in mathematics.

Definition 2.1. A matroid M on a finite set E is a function rkM : 2E → N,
called the rank function of M , which satisfies the following properties:

(R1) If A ⊆ E, then 0 ≤ rkM(A) ≤ |E|.

(R2) If A ⊆ B ⊆ E, then rkM(A) ≤ rkM(B).

(R3) If A,B ⊆ E, then rkM(A ∪B) + rkM(A ∩B) ≤ rkM(A) + rkM(B).

We call rk(M) := rkM(E) the rank of matroid M . A subset A ⊆ E is called

• independent if rkM(A) = |A| and dependent otherwise,

• spanning if rkM(A) = rk(M),

• a basis of M if A is independent and spanning,

13



14 CHAPTER 2. MATROIDS

• a circuit if it is a minimal dependent set,

• a hyperplane if it is a maximal non-spanning set,

• an atom if rkM(A) = 1,

• a flat or a closed set if rkM(A ∪ {x}) = rkM(A) + 1 for any x ∈ E\A.

We denote by I(M), S(M), B(M), C(M), H(M) and A(M) the sets of
independent sets, spanning sets, bases, circuits, hyperplanes and atoms of
M , respectively.
For a subset A ⊆ E, the closure clM(A) of A in M is the minimal flat
containing A.

The following are the basic operations on matroids to get new matroids from
old ones.

Definition 2.2. Let M be a matroid on E. The dual of M is a matroid M∗

on E with bases B(M∗) = {E\B : B ∈ B(M)}.

It follows from definition that M∗∗ = M . The independent sets and the cir-
cuits of M∗ are the complements of the spanning sets and hyperplanes of M ,
respectively, and vice versa. For A ⊆ E, rkM∗(A) = |A|−rk(M)+rkM(E\A).

Definition 2.3. Let M be a matroid on E and A ⊆ E. The restriction M |A
of M to A is a matroid on E\A with independent sets I(M |A) = {I ∈ I(M) :
I ⊆ A}. The deletion of A from M is the matroid M\A := M |(E\A). The
contraction M/A of A from M is the matroid given by M/A := (M∗\A)∗.
A matroid M ′ is called a minor of M if it can be obtained from M by a
sequence of restriction and contraction operations. (Remark that the order
is irrelevant.)

Definition 2.4. LetM1 be a matroid on E1 andM2 be a matroid on E2 where
E1∩E2 = ∅. The direct sum of M1 and M2 is the matroid M1⊕M2 on E1∪E2

whose independent sets are I(M1 ⊕M2) = {I ∪ J : I ∈ I(M1), J ∈ I(M2)}.

We state in addition the flat axioms of matroids here because its great rele-
vance in this thesis.

Definition 2.5. A matroid M on a finite set E is a collection LM of subsets
of E, called flats of M , satisfying the following properties:

(F1) E ∈ LM .

(F2) If F1, F2 ∈ LM , then F1 ∩ F2 ∈ LM .
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(F3) If F ∈ LM and {F1, . . . , Fk} the set of minimal members of LM that
properly contain F , then the sets F1\F, . . . , Fk\F partition E\F .

The set of flats LM of a matroid M , ordered by inclusion, is a lattice with
meet and join

A ∧B = A ∩B, A ∨B = clM(A ∪B),

called the lattice of flats of M .

Definition 2.6. Let M be a matroid on E. An element e ∈ E is called
a loop in M if rkM({e}) = 0, and it is called a coloop in M if it is a loop
in M∗, i.e. if rkM(E\e) = rk(M) − 1. A matroid M is called simple or a
combinatorial geometry if it is loopless and every atom of M has cardinality
1.

One can see that for every matroid M , there is a simple matroid on A(M)
with lattice of flats isomorphic to LM : If we delete all loops from M and
then, for each atom A ∈ A(M) with |A| ≥ 2, delete all but one distinguished
element of A, the matroid we obtain is unique up to a renaming the dis-
tinguished elements. The following is a classification for lattices of flats of
matroids.

Definition 2.7. A lattice is atomic if every element is a join of atoms. A
graded lattice is semimodular if its rank function r satisfies

r(x) + r(y) ≥ r(x ∨ y) + r(x ∧ y) ∀x, y.

A geometric lattice is a finite atomic semimodular lattice.

Theorem 2.1. A lattice is geometric iff it is the lattice of flats of a matroid.

That is, geometric lattices are cryptomorphic to simple matroids: Given a
geometric lattice L, we can define a simple matroid M on the set of atoms
of L with the rank function that maps A to the rank of

∨
A in L, i.e. the

length of any chain from the minimum to
∨
A in L. Then we have LM ∼= L.

Remark that every geometric lattice is also coatomic. By definition, the
coatoms of a matroid M are the hyperplanes of M .

Proposition 2.2. Let F be a flat in a matroid M and suppose that rkM(F ) =
rk(M) − k. Then M has a set {H1, . . . , Hk} of hyperplanes such that F =⋂k
i=1Hi.

Therefore, by duality, every flat of the dual matroid M∗ is the complement
of a union of circuits in M .
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The following statements are the interaction of minor operations on the lat-
tice of flats, which is easy to show but relevant to the induction of the main
theorem in this thesis.

Proposition 2.3. Let M be a matroid on E and A ⊆ M . Let F ⊆ E\A be
a subset. Then F ∈ LM/A iff F ∪ A ∈ LM , and F ∈ LM\A iff F = F ′\A for
some flat F ′ of M .

Corollary 2.4. Let M be a matroid on E and A ⊆ E. Then

1. LM/A is isomorphic to the interval [clM(A), E] of LM ,

2. if A is a flat of M , then LM |A is isomorphic to the interval [clM(∅), A]
of LM .

Another point of view on matroids is by polytopes. The optimization prob-
lem on matroids can be reformulated by a linear programming problem on
matroid polytopes. Remark that matroids can also be characterized by the
property that the greedy algorithm always finds an optimal solution.

Definition 2.8. Let M be a matroid on E. The (matroid) base polytope
P(M) of M is a polytope in RE defined by

P(M) := conv {eB : B ∈ B(M)} ⊂ RE,

where eB :=
∑

i∈B ei.

Proposition 2.5. The hyperplane-representation of the base polytope P(M)
of a matroid M on E is

P(M) =

{
x ∈ RE

∣∣∣∣∣xi ≥ 0 ∀i ∈ E,
∑
i∈S

xi ≤ rkM(S) ∀S ⊆ E,
∑
i∈E

xi = rk(M)

}
.

Proposition 2.6. 1. P(M∗) = 1− P(M) where 1 = (1, . . . , 1).

2. P(M1 ⊕M2) = P(M1)× P(M2).

3. Let M be a matroid on E and e ∈ E. If e is not a loop or a coloop, then
P(M\e) ∼= P(M) ∩ {x : xe = 0} and P(M/e) ∼= P(M) ∩ {x : xe = 1}.
If e is a loop or a coloop, then P(M\e) = P(M/e) ∼= P(M), as P(M)
lies in the hyperplane {x : xe = 0} or {x : xe = 1}, respectively.

The following characterization of matroid polytopes can be regarded as an-
other cryptomorphic definition of matroids.
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Theorem 2.7 ([Gel+87]). A polytope P ⊂ RE is the base polytope of a
matroid on E iff

(P1) every vertex of P is in {0, 1}E,

(P2) every edge of P is parallel to ei − ej for some i, j ∈ E.

Example 2.8 (uniform matroids). Let m,n be non-negative integers such
that m ≤ n. Let E be an n-element set. The set

(
E
m

)
of m-element sub-

sets of E is the set of bases of a matroid on E, called the uniform ma-
troid of rank m on E, denoted by Um,E or Um,n. For A ⊆ E, we have
rkUm,n(A) = min{|A|,m}. The set of flats of Um,n consist of all subsets
A ⊆ E of cardinality less than m and E itself. The dual of Um,n is Un−m,n.
The base polytope P(Um,n) is the hypersimplex ∆n,m. The matroid Un,n is
called the Boolean matroid because its lattice of flats is a Boolean lattice.

Example 2.9 (graphic matroids). Let G = (V,E) be a graph. The set of
cycles of G is the set of circuits of a matroid on E, called the cycle ma-
troid M(G) of G. The bases of M(G) are the spanning forests of G, the
hyperplanes of M(G) are the complements of the minimal cuts in G. The
rank of A ⊆ E in M(G) is |V | − k(G〈A〉). The flats of M(G) are the edge
sets of the induced subgraphs of G. The loops of M(G) are the loops of G,
and M(G) is simple iff G is a simple graph. Moreover, the minor operations
and the dual are compatible to graph operations by M(G\e) = M(G)\e and
M(G/e) = M(G)/e, and M(G)∗ = M(G∗) for planar graphs G where G∗ is
a plane dual of G. Remark that non-isomorphic graphs can have the same
cycle matroid. A matroid is called graphic if it is the cycle matroid of some
graph.

Example 2.10 (linear matroids). Let A be an m × n-matrix over the field
K. Let E be the set of column labels of A. Then M(A) is a matroid on E,
called the column matroid of A, whose independent sets are the subsets of
E indexing linearly independent multisets of column vectors. A matroid is
called linear or representable over K if it is the column matroid of some ma-
trix over K, and is called regular if it is linear over any field. Every graphic
matroid M = M(G) is regular because it is the column matroid of the inci-
dence matrix of an arbitrary orientation of G. A matrix A can be regarded
as a vector configuration or a hyperplane configuration consisting of the col-
umn vectors resp. their orthogonal complements. Deletion and contraction
by e correspond to removing e and projecting to the hyperplane with normal
vector e, respectively. Duality is the orthogonal complementarity of the row
spaces, explicitly, M([Ir|D])∗ = M([−D>|In−r]).
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Example 2.11 (non-representable matroids). It was proven recently that
almost all matroids are not representable over any field [Nel16]. The following
pictures are the rank 3 simple matroids M1, M2 and M3, where points and
lines mean rank 1 and 2 flats, respectively. The Fano matroid M1 = PF2

2

is representable over K iff char(K) = 2, and the non-Fano matroid M2 is
representable over K iff char(K) 6= 2. Therefore M1⊕M2 is not representable
over any field. The non-Pappus matroid M3 is not representable over any
field because it violates the Pappus’s hexagon theorem.

M1 M2 M3

2.2 Characteristic Polynomials

As we have seen in Example 2.9, matroids are a generalization of graphs.
Actually, almost all graph-theoretic statements without concerning vertices
can be rephrased in matroid theoretic language. As vertices do not play an
essential role in in the representations (1.1) and (1.2) of chromatic polyno-
mials, we can generalize them to matroids as follows.

Definition 2.9. Let M be a matroid on E. The characteristic polynomial
(or chromatic polynomial) of M is defined by

χM(q) =
∑
A⊆E

(−1)|A|qrk(M)−rkM (A).

If the matroid M = M(G) is graphic, then from rkM(A) = |V | − k(G〈A〉)
and rk(M) = |V | − k(G) for any A ⊆ E, we have

χG(q) = qk(G)χM(q).

It is not surprising that the characteristic polynomial also satisfies the recur-
rence relation similar to (1.1).
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Proposition 2.12. Let χM(q) be the characteristic polynomial of a matroid
M on E and e ∈ E not a coloop. Then

χM(q) = χM\e(q)− χM/e(q).

If e ∈ E is a coloop, then

χM(q) = (q − 1)χM\e(q).

If M = M1 ⊕M2, then

χM(q) = χM1(q)χM2(q).

Remark that M/e = M\e for a loop or a coloop e ∈ E, thus χM(q) = 0 for a
matroid M containing a loop. That reflects the fact that a graph with loops
has no proper coloring.

Let M be a matroid on E. Let LM be the lattice of flats of M with Möbius
function µM : LM × LM → Z. Recall that the Möbius function of a poset is
given recursively by

µ(x, y) =


0 x � y

1 x = y

−
∑

x≤z<y µ(x, z) x < y

.

The Möbius function µM can be expanded by the Möbius function of the
Boolean lattice on E as

µM(F1, F2) =
∑

F1⊆A⊆F2
clM (A)=F2

(−1)|A|−|F1|.

One can verify easily that this expansion satisfies the definition of µM . There-
fore, we can collect the terms of the characteristic polynomial as follows.

Proposition 2.13. Let M be a loopless matroid. Then we have

χM(q) =
∑
F∈LM

µM(∅, F )qrk(M)−rk(F ). (2.1)

The coefficient wk(M) of qrk(M)−k in χM(q) is called the k-th Whitney number
of the first kind of M , that is,

χM(q) =

rk(M)∑
k=0

wk(M)qrk(M)−k, wk(M) =
∑
F∈LM

rkM (F )=k

µM(∅, F ).
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The following theorem implies that (−1)kwk(M) is positive for any loopless
matroid M , which makes the conjecture for log-concavity meaningful.

Theorem 2.14 ([Rot64]). The Möbius function µL of a geometric lattice L
is nonzero and alternates in sign. Precisely,

(−1)r(y)−r(x)µL(x, y) > 0

if x ≤ y in L, where r is the rank function in L.

Proof. Since every interval of a geometric lattice is geometric it suffices to
prove that (−1)rk(M)µM(∅, E) > 0 for a simple matroid M on E. We prove
by induction on the rank rk(M) and the corank |E| − rk(M) of M .
If M has corank 0, it is a Boolean matroid and LM is a Boolean lattice.
Hence µM(∅, E) = (−1)|E| and (−1)rk(M)µM(∅, E) = 1 > 0. This case in-
cludes simple matroids with rank 0 or 1.
If M has positive corank, it is not a Boolean matroid. Hence there is an ele-
ment e ∈ E which is not a coloop. By induction on rank, (−1)rk(M/e)µM/e(∅, E\e) >
0. By induction on corank, (−1)rk(M\e)µM\e(∅, E\e) > 0. By Proposi-
tion 2.12, the constant terms in the expression (2.1) satisfy

(−1)rk(M)µM(∅, E) = (−1)rk(M/e)µM/e(∅, E\e)+(−1)rk(M\e)µM\e(∅, E\e) > 0,

which completes the proof.

Corollary 2.15. The Whitney numbers wk(M) of a loopless matroid M are
nonzero and alternate in sign. Precisely,

(−1)kwk(M) = |wk(M)| > 0.

Conjecture 2.16 (Heron-Rota-Welsh conjecture). The sequence wk(M) is
log-concave:

wk−1(M)wk+1(M) ≤ wk(M)2 for all 1 ≤ k ≤ rk(M)− 1.

In particular, wk(M) is unimodal:

|w0(M)| ≤ · · · ≤ |wl(M)| ≥ · · · ≥ |wrk(M)(M)| for some 0 ≤ l ≤ rk(M).

Because the characteristic polynomial is the protagonist in the main theorem
of the thesis, we state here some important properties and applications of
the characteristic polynomials.
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The beta invariant β(M) of a matroid M is given by

β(M) = (−1)rk(M)−1 d

dq
χM(q)

∣∣∣∣
q=1

= (−1)rk(M)
∑
F∈LM

µM(∅, F )rkM(F )

This numerical invariant of matroids deduced from characteristic polynomial
encodes much nontrivial structural information of matroid.

Theorem 2.17 ([Cra67; Bry71]). Let M be a matroid.

• β(M) ≥ 0 and β(M) > 0 iff M is connected and is not a loop.

• β(M) = β(M\e) + β(M/e) if e is neither a loop nor a coloop, and
β(M∗) = β(M) if M is not a loop or a coloop.

• A matroid M is regular iff β(M1) ≤ 1 for all four element minors M1

of M and β(M2) ≤ 2 for all seven element minors M2 of M .

• A matroid M is the cycle matroid of a series-parallel network (graphs
without K4 as minor) iff it is not a coloop and β(M) = 1.

The characteristic polynomial is a Tutte-Grothendieck invariant of matroids,
which is an invariant f of matroids satisfying f(M) = f(M\e) + f(M/e) for
e neither a loop nor a coloop, and f(M1 ⊕M2) = f(M1)f(M2). The Tutte
polynomial TM(x, y) of a matroid M on E is defined by

TM(x, y) =
∑
A⊆E

(x− 1)rk(M)−rkM (A)(y − 1)|A|−rkM (A).

which has the recurrence relation

TM(x, y) =


TM\e(x, y) + TM/e(x, y) if e is neither a loop nor a coloop,

xTM\e(x, y) if e is a coloop,

yTM\e(x, y) if e is a loop,

It is a universal T-G invariant of matroids, in the sense that every T-G in-
variant f(M) is an evaluation of the Tutte polynomial TM(x, y) by setting
x = f(coloop) and y = f(loop). By the recurrence relation in Proposi-
tion 2.12, the invariant (−1)rk(M)χM(q) is a T-G invariant, and we have

χM(q) = (−1)rk(M)TM(1− q, 0)

and the beta invariant β(M) is the coefficient of x0y1 (and x1y0) in TM(x, y).
The Tutte polynomial has nice properties such as TM(x, y) = TM∗(y, x) and
the convolution formula

TM(x, y) =
∑
A⊆E

TM/A(x, 0)TM |A(0, y).
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The independent sets I(M) of a matroid M on E form a pure simplicial com-
plex on E, called the independence complex of M . In particular, a simplicial
complex I on E is the set of independent sets of a matroid iff it satisfies the
independence augmentation axiom

(I3) if I1, I2 ∈ I and |I1| < |I2|, then there is an element e ∈ I2\I1 such that
I1 ∪ {e} ∈ I.

Another classification for independence complexes is

(I3’) I|S := {I ∈ I : I ⊆ S} is pure for all S ⊆ E.

Let (f0(M), . . . , frk(M)(M)) be the f -vector of the independence complex
I(M) of a matroid M on E, i.e. fk(M) = |{I ∈ I(M) : |I| = k}|, and

fM(x) :=

rk(M)∑
k=0

fi(M)xrk(M)−k

be its f -polynomial. By comparing with the explicit or recurrence definition
of the Tutte polynomial, we have fM(x) = TM(x+ 1, 1).
In [Mas72], Mason proposed the following three conjectures about log-concavity,
written in increasing strength.

Conjecture 2.18 (Mason’s conjecture). For any matroid M and any 1 ≤
k ≤ rk(M)− 1,

(i) fk(M)2 ≥ fk−1(M)fk+1(M),

(ii) fk(M)2 ≥
(
1 + 1

k

)
fk−1(M)fk+1(M),

(iii) fk(M)2 ≥
(
1 + 1

k

) (
1 + 1

f1(M)−k

)
fk−1(M)fk+1(M)

The (i) part of Mason’s conjecture follows from the log-concavity of wk(M)
due to the following rediscovery of [Bry77] in [Len13]. The broken circuits of
a loopless matroid M on a linearly ordered set E are {C\minC : C ∈ C(M)}.
The broken circuit complex BC(M) is the collection of all subsets of E that
do not contain a broken circuit. A classical result in [Rot64] states that the
f -polynomial of BC(M) is exactly the signless characteristic polynomial of
M . That is,

fBC(M)(q) = (−1)rχM(−q) and fk(BC(M)) = (−1)kwk(M).

Let e /∈ E. The free coextension of M is the matroid (M∗ ⊕ U1,{e})
∗ on

E ∪ {e}. Remark that e is a loop in the free coextension and hence is in
every set of its broken circuits complex. In [Bry77] it is shown that the
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independence complex of any matroid M is the broken circuit complex of
the free coextension of M restricted in E, that is,

I(M) = BC((M∗ ⊕ U1,{e})
∗)|E.

Therefore we get the following theorem which shows that the log-concavity
of wk(M) implies the log-concavity of fk(M).

Theorem 2.19. Let M be a matroid of rank r and let M ′ := (M∗ ⊕ U1,1)∗

be the free coextension of M . Then

(−1)r+1χM ′(−q) = (1 + q)fM(q).

Recently, the strongest form (iii) of Mason’s Conjecture is proven indepen-
dently in [Ana+18] and [BH18].

Example 2.20 (uniform matroids). The lattice of flats of the uniform ma-
troid Um,n on [n] is LUm,n = {F ⊆ [n] : |F | ≤ m− 1 or |F | = n}. Therefore,
we have

χUm,n(q) =
m−1∑
k=0

(−1)k
(
n

k

)(
qm−k − 1

)
.

The Whitney numbers wk(Um,n) = (−1)k
(
n
k

)
are signed binomial coefficients

for k < m, and when k = m, wm(Um,n) = −
∑m−1

k=0 (−1)k
(
n
k

)
= (−1)m

(
n−1
m−1

)
is

a partial sum of them. The log-concavity of wk(Um,n), k = 1, . . . ,m follows
from the log-concavity of binomial coefficients and the fact that

(
n
m

)
≥
(
n−1
m−1

)
.

Example 2.21 (linear matroids). Let M be the matroid of a hyperplane
arrangement A in Kn, and Kn\A = Kn\

⋃
A be its complement.

1. [Zas75] If K = R, then the number of regions in Rn\A is equal to
(−1)nχM(−1), and the number of relatively bounded regions is equal
to (−1)rk(M)χM(1).

2. [OS80] IfK = C, then the Poincaré polynomial (the generating function
of Betti numbers) of the cohomology ring of Cn\A is given by∑

k≥0

rankHk(Cn\A,Z) qk = (−q)nχM
(
−1

q

)
.

3. [CR70] IfK = Q, by multiplying each hyperplane equation by a suitable
integer and modulo a prime p, we get an induced hyperplane arrange-
ment Aq in Fnq , q = pr. For large enough p, the intersection lattices of
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A and Aq are isomorphic, in this case,∣∣Fnq \Aq∣∣ = qn −
∣∣∣⋃Aq∣∣∣ = qn−rk(M)χM(q).

2.3 Bergman Fans of Matroids

Let K be any field with a valuation. In this section we mostly work with the
trivial valuation, that is val(a) = 0 for all a ∈ K∗ and val(0) = ∞. Given
a Laurent polynomial f =

∑
u∈Zn cux

u ∈ K[x±1
1 , . . . , x±1

n ], the tropicalization
of f is the piecewise linear function trop(f) : Rn → R given by

trop(f)(w) = min
u∈Zn
{val(cu) + w · u}.

trop(f) is a polynomial in the tropical semiring (R ∪ {∞},min,+), called a
tropical polynomial.
Analogue to the classical variety which is the solution set of a polynomial
equation system, when F is a tropical polynomial, the set

V (F ) = {w ∈ Rn : the minimum in F (w) is achieved at least twice}

is the locus in Rn where the piecewise linear function F failed to be linear,
called a tropical hypersurface. We denote that trop(V (f)) = V (trop(f)).
Let I be an ideal in K[x±1

1 , . . . , x±1
n ] and let X = V (I) be its variety in the

torus T n = (K∗)n. The tropicalization of the variety X is

trop(X) =
⋂
f∈I

trop(V (f)) ⊆ Rn.

Note that trop(X) is generally not the intersection over the tropical hyper-
surfaces trop(V (f)) where f runs over a generating set of the ideal I of X.
We call a finite generating set T for an ideal I in K[x±1

1 , . . . , x±1
n ] a tropical

basis if
trop(V (I)) =

⋂
f∈T

trop(V (f)).

It is known that every ideal has a finite tropical basis.
In 1971, Bergman [Ber71] introduced the logarithmic limit set of a subvariety
of the complex algebraic torus (C∗)n which is the same as the tropical variety.
Let I be an ideal in C[x±1

1 , . . . , x±1
n ] and V (I) = {z ∈ (C∗)n : f(z) =

0 for all f ∈ I} ⊆ (C∗)n be its variety. The amoeba of the ideal I is the
subset of Rn defined as image of the coordinate-wise logarithm map:

A(I) = {(log(|z1|), . . . , log(|zn|)) ∈ Rn : z = (z1, . . . , zn) ∈ V (I)} .
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For any real number M > 0, consider the set

AM(I) = − 1

M
A(I) ∩ Sn−1

where Sn−1 = {x ∈ Rn : ||x|| = 1} is the (n − 1)-dimensional unit sphere
in Rn. The logarithmic limit set A∞(I) is the set of points v on the sphere
Sn−1 such that there exists a sequence of points vM ∈ AM(I) converging to v.
In other words, it is the asymptotic directions of the tentacles of the amoeba.

Theorem 2.22 ([Jon16]). The tropical variety of I coincides with the cone
over the logarithmic limit set A∞(I), i.e., a nonzero vector w ∈ Rn lies in
trop(V (I)) iff the corresponding unit vector 1

||w||w lies in A∞(I).

By the structure theorem of tropical varieties, trop(V (I)) is the support of
a polyhedral fan. The fan structure on trop(V (I)) is called the Bergman fan
of X and it implies that A∞(I) is a spherical polyhedral complex in Sn−1,
called the Bergman complex.

Let A = {Hi : 0 ≤ i ≤ n} be an arrangement of n + 1 hyperplanes in
the projective space Pd. Namely, A represents a simple linear matroid M .
Let X = Pd\

⋃
A be the complement of hyperplane arrangement. We will

see that X is naturally a closed subvariety of the torus T n cut out by a
linear system of equations. The tropicalization of X depends only on the
combinatorics of A, namely, the matroid M . As X is a linear subspace in
T n, trop(X) is referred to as tropicalized linear space. Moreover, we can
get different descriptions for trop(X), some of them do not depend on the
representation of M , thus can be generalized to any matroid, to define the
tropical linear spaces and their Bergman fans.

Write Hi = {z ∈ Pn : bi · z = 0} where bi ∈ Kd+1 is a normal vector of the
hyperplane Hi. We can assume that b0, . . . ,bn span Kd+1.
Fix a torus T n = (K∗)n+1/K∗ in Pn. Consider the map ι : X → T n, z 7→
(b0 · z, . . . ,bn · z). The map ι is injective as bi span Kn+1. Thus the image
ι(X) is a closed subset of T n. Let B = (b0 · · · bn) be the (d+ 1)× (n+ 1)-
matrix whose columns are bi, and let A = (aij) be an (n−d)×(n+1)-matrix
whose rows are a basis for the kernel of B. Namely, the columns of A is a
Gale transform of {b0, . . . ,bn}. Let

I =

〈
fi =

n∑
j=0

aijxj

∣∣∣∣∣ 1 ≤ i ≤ n− d

〉

be the homogeneous ideal in K[x±1
0 , . . . , x±1

n ]. That means ι(X) = B>X and
V (I) = kerA ∩ T n. Because of our construction we have kerA = imB> and
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ι(X) ⊆ T n. If x ∈ V (I) = kerA ∩ T n then each coordinate of x is nonzero,
so the unique point z ∈ Kd+1 with x = B>z does not lie in any hyperplane
of A, so x ∈ B>X. We have proven that ι(X) = V (I).

Proposition 2.23. The map ι defines an isomorphism between the hyper-
plane arrangement complement X = Pd\

⋃
A and the subvariety V (I) of

T n.

By reversing the construction, we see that any ideal I generated by linear
forms arises from some hyperplane arrangement. If the linear forms are not
homogeneous, we can homogenize the ideal. So we get a correspondence
between hyperplane arrangements A in Pd and homogeneous linear ideals
I ⊂ K[x±1

0 , . . . , x±1
n ]: The coefficients of linear forms in I are exactly the

dependencies of B.

So where are the information of matroids? In the hyperplane arrangement A
a circuit C ⊆ A consists of hyperplanes whose normal vectors are minimally
dependent. That means for any j ∈ C,

⋂
i∈C Hi =

⋂
i∈C\{j}Hi and has

codimension |C| − 1. As the dependencies are the coefficients of linear forms
in I, a circuit C is also the inclusion-minimal support C = supp(lC) = {i :
ai 6= 0} of a nonzero linear form 0 6= lC =

∑
aixi ∈ I. The linear form lC is

uniquely determined for each circuit C up to scaling.

It can be shown via the Gröbner theory that the circuits form a tropical basis
for I.

Proposition 2.24. Let I ⊆ K[x±1
0 , . . . , x±1

n ] be an ideal generated by linear
forms where K has the trivial valuation, and consider the hyperplane arrange-
ment X = V (I). The set of polynomials lC in I whose supports are circuits
is a tropical basis for I. Equivalently,

trop(X) =

{
w ∈ Rn+1/R1

∣∣∣∣min
i∈C

wi is attained at least twice ∀ circuit C of I

}
.

Note that if w ∈ trop(X) then w + λ1 ∈ trop(X), i.e. trop(X) is invariant
under tropical scalar multiplication. So trop(X) lives in the tropical projective
torus Rn+1/R1.

From Proposition 2.24 we can see that trop(X) depends only on the matroid
of A, it does not depend on how the matroid is realized. It is referred to as
a tropicalized linear space.
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Definition 2.10. A tropicalized linear space over K is a tropical variety of
the form trop(X) where X is a linear space in T nK

∼= (K∗)n+1/K∗. That is,
X is cut out by homogeneous linear forms in K[x±1

0 , . . . , x±1
n ].

We can turn the description of trop(X) in Proposition 2.24 into a definition
and drop the representation as a linear ideal I, to generalize the construction
to any matroid M , representable or not, and call the associated trop(M) a
tropical linear space.

Definition 2.11. Let M be a matroid on E = {0, . . . , n}. The tropical linear
space associated to M is

trop(M) =

{
w ∈ Rn+1/R1

∣∣∣∣min
i∈C

wi is attained at least twice ∀C ∈ C(M)

}
.

Note that the definition of tropical linear spaces can be generalized to non-
trivial valuations via Dressians.

Definition 2.12. Let M be a matroid on E = {0, . . . , n}. For any w ∈ Rn+1,
The initial matroid Mw is a matroid on E whose circuits are the inclusion-
minimal sets under {j ∈ C : wj = mini∈C wi}, where C runs over all circuits
of M .

It can be shown that the circuits of Mw satisfy the axioms so Mw is indeed
a matroid. Recall that the matroid polytope P(M) of M is the convex hull
of the indicator vectors of all bases of M . Here the negative of the normal
fan of a polytope is called the outer normal fan. Since each circuit of Mw is
a subset of a circuit of M , each independent set of Mw is also independent
in M . As optimization on matroids corresponds to linear programming on
matroid polytopes, P(Mw) is a face of P(M).

Proposition 2.25. For any w ∈ Rn+1, P(Mw) is the face of the matroid
polytope P(M) at which w is maximized. Thus Mw is constant on the relative
interior of cones in the outer normal fan of P(M).

Now we can rewrite Definition 2.11. A vector w lies in trop(M) iff mini∈C wi
is achieved at least twice for all circuits C of M , iff all circuits of Mw have
size at least two, iff Mw has no loops. Therefore we have the following de-
scription of trop(M).

Theorem 2.26. The tropical linear space trop(M) is the union of those
cones of the outer normal fan of P(M) for which Mw has no loops:

trop(M) =
{
w ∈ Rn+1/R1 : Mw has no loops

}
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This fan structure on trop(M) defined above is a subfan of the outer nor-
mal fan of the matroid polytope P(M), thus it is the coarsest possible fan
structure on trop(M).

Now we describe a fan structure on trop(M) that is natural from a com-
binatorial perspective. Let M be a matroid on {0, . . . , n} and LM be the
lattice of flats of M . A flat F of M is represented by its indicator vector
eF =

∑
i∈F ei. We regard eF as an element in Rn+1/R1. For any chain of

flats ∅ ( F1 ( · · · ( Fr ( E, consider the polyhedral cone spanned by their
incidence vectors

σ = cone(eF1 , . . . , eFr) + R1 = {λ01 + λ1eF1 + · · ·+ λreFr : λ1, . . . λr ≥ 0} .

Theorem 2.27. Let M be a matroid on E = {0, . . . , n}. The collection of
cones cone(eF1 , . . . , eFr) + R1, where ∅ ( F1 ( · · · ( Fr ( E runs over all
chains of flats of M , forms a pure simplicial fan of dimension rk(M)− 1 in
Rn+1/R1. The support of this fan equals the tropical linear space trop(M).

In [AK06], the fan structures described in Theorem 2.26 and Theorem 2.27
are called the coarse subdivision and the fine subdivision of trop(M), respec-
tively. In this paper the latter one is called the Bergman fan of M .

Definition 2.13. Let M be a matroid on E = {0, . . . , n}. The Bergman fan
ΣM of M is a fan in Rn+1/R1 consisting of cones σF := cone(uF1 , . . . ,uFk)
for every flag of nonempty proper flats F = (F1 ( . . . ( Fk) in M , where uF
is the vector in the quotient space Rn+1/R1 corresponding to eF .

Consider the uniform matroid U|E|,E on E of full rank. Its lattice of flats
LU|E|,E is the Boolean lattice on E. For every matroid M on E, LM can
be embedded on LU|E|,E . Therefore, the Bergman fan ΣU|E|,E of U|E|,E is a

complete fan in Rn+1/R1 and the Bergman fan ΣM of every matroid M on
E is a subfan of ΣU|E|,E . We will see that this fan is the normal fan of the
permutohedron Πn and is called the permutohedral fan ΣAn .

Definition 2.14. The n-dimensional permutohedral fan is the complete fan
ΣAn whose d-dimensional cones are of the form σF = cone(uF1 , . . . ,uFd) for
every chain F = (∅ ( F1 ( . . . ( Fd ( E) of nonempty proper subsets of E.
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Recall that the permutohedron (or permutahedron in [Zie12]) Πn is

Πn = conv {(x0, . . . , xn) |x0 · · ·xn ∈ SE}

=

{
x ∈ Rn+1

∣∣∣∣∣
n∑
i=0

xi =

(
n+ 1

2

)
,∀S ⊆ E :

∑
i∈S

xi ≤
|S|
2

}

=
n

2
1 +

∑
0≤i<j≤n

[
−ej − ei

2
,
ej − ei

2

]
.

Πn is an n-dimensional polytope contained in the hyperplane
∑n

i=0 xi =
n(n + 1)/2 in Rn+1. All (n + 1)! points in the convex hull representation
above are vertices of Πn because the symmetric group SE on E acts on Πn

by permuting the coordinates. The (n−d)-dimensional faces of Πn correspond
bijectively to a flag of nonempty proper subsets of E. For a flag F = (∅ (
F1 ( . . . ( Fd ( E) there is a face

ΠF = conv {(x0, . . . , xn) ∈ vert Πn | ∀j ∈ [d]∀k ∈ Fj\Fj−1 ∀l ∈ Fj+1\Fj : xk < xl}

corresponding to F . The coordinates of every vertex of the face ΠF in posi-
tions in Fi are 0, . . . , |Fi|−1, therefore the difference between any two vertices
of ΠF is orthogonal to eFi , for any i ∈ [d]. Thus, the permutohedral fan ΣAn

is the normal fan of the permutohedron Πn. We remark that the number of
(n−d)-dimensional faces in Πn is the number of ordered partitions of E into
d+ 1 parts F1, F2\F1, . . . , Fd\Fd−1, E\Fd, namely (d+ 1)!

{
n+1
d+1

}
.
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Chapter 3

Chow Rings

3.1 Minkowski Weights and Chow Rings

3.1.1 Homology and cohomology

Let N be a lattice of rank n. We denote by N∨ be the dual lattice of N , and
by NR := N ⊗ZR. For a rational fan Σ in NR, the set of k-dimensional cones
in Σ is denoted by Σ(k). For a ray ρ ∈ Σ(1), write uρ for the primitive ray
vector that generates ρ ∩N .
A fan Σ is called complete if its support |Σ| = NR. A fan Σ is said to
be smooth if for all cones σ of Σ, the set of primitive ray vectors of σ can
be extended to a basis of N , and simplicial if every k-dimensional cone is
generated by k rays. As a smooth fan Σ is simplicial, it defines a simplicial
complex on the set Σ(1) of rays of Σ whose facets are the maximal cones of
Σ, thus we can define the star of a cone σ in Σ to be

star(σ,Σ) := {σ′ ∈ Σ |σ, σ′ ⊆ τ for some τ ∈ Σ}

and the link of a cone σ in Σ to be

link(σ,Σ) := {σ′ ∈ Σ |σ, σ′ ⊆ τ for some τ ∈ Σ, and σ ∩ σ′ = {0}}

which are subfans of the fan Σ.

Definition 3.1. Let Σ be a smooth fan in an n-dimensional latticed vector
space NR. The Chow ring A•(Σ) of Σ is the graded algebra

A•(Σ) = R[xρ : ρ ∈ Σ(1)]/(IΣ + JΣ)

31
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where IΣ and JΣ are the ideals of R[xρ : ρ ∈ Σ(1)] defined by

IΣ :=

〈∏
ρ∈S

xρ

∣∣∣∣∣ the rays S ⊆ Σ(1) do not form a cone in Σ

〉
,

JΣ :=

〈 ∑
ρ∈Σ(1)

〈uρ,m〉xρ

∣∣∣∣∣∣m ∈ N∨
〉
.

Elements in A1(Σ) are called divisors on Σ.

The ideal IΣ is the Stanley-Reisner ideal of the simplicial complex defined
by the smooth fan Σ. See [Sta07; MS04] for the interaction between combi-
natorics and commutative algebra.

Remark. The Chow ring A•(Σ) takes coefficients initially in Z, and is nat-
urally isomorphic to the Chow ring A•(XΣ) of the smooth toric variety
XΣ =

⋃
σ∈Σ SpecK[Σ∨ ∩N∨] associated to Σ by

A•(Σ)
∼−→ A•(XΣ), xσ 7→ [Xstar(σ,Σ)].

If Σ is a complete smooth fan, then A•(Σ) ∼= A•(XΣ) ∼= H•(XΣ,Z), where
H•(XΣ,Z) is the cohomology ring with coefficients in Z, for which the Poincaré
duality property is satisfied. This also holds with coefficients in Q instead of
Z when Σ is simplicial instead of smooth, see [CLS11, §12.5].

Let Zk(Σ) be the R-subspace of R[xρ : ρ ∈ Σ(1)] spanned by the square-free
monomials

xσ :=
∏
ρ∈σ

xρ

for all σ ∈ Σ(k). That is,

Zk(Σ) :=
⊕
σ∈Σ(k)

Rxσ.

Proposition 3.1. The degree k part Ak(Σ) of the Chow ring of Σ is spanned
by Zk(Σ) for each non-negative integer k. In particular, if k > dim Σ, then
Ak(Σ) = 0.

Proof. Let σ be a cone in Σ, let ρ1, ρ2, . . . , ρl be its rays, and consider a
degree k monomial of the form

xk1ρ1x
k2
ρ2
· · ·xklρl , k1 ≥ k2 ≥ · · · ≥ kl ≥ 1.
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We show that the image of this monomial in Ak(Σ) is in the span of Zk(Σ).
We do this by descending induction on the dimension of σ. If dimσ = k,
there is nothing to prove. If otherwise, we use the smoothness of σ to choose
m ∈ N∨ such that

〈uρ1 ,m〉 = −1 and 〈uρ2 ,m〉 = · · · = 〈uρl ,m〉 = 0.

This shows that, modulo the relations given by IΣ and JΣ, we have

xk1ρ1x
k2
ρ2
· · ·xklρl = xk1−1

ρ1
xk2ρ2 · · ·x

kl
ρl

∑
ρ∈Σ(1)\{ρ1}

〈uρ,m〉xρ

= xk1−1
ρ1

xk2ρ2 · · ·x
kl
ρl

∑
ρ∈link(σ,Σ)(1)

〈uρ,m〉xρ.

The induction hypothesis applies to each of the terms in the expansion of
the right-hand side.

Definition 3.2. An l-dimensional Minkowski weight ∆ ∈ MWl(Σ) is a func-
tion ∆ : Σ(l) → R such that for each τ ∈ Σ(l − 1), the function ∆ satisfies
the balancing condition ∑

σ⊇τ

∆(σ)uσ\τ ∈ spanR(τ)

where σ\τ denotes the unique ray of an l-dimensional cone σ that is not in
τ .

The group of l-dimensional weights on Σ can be identified with the dual of
Z l(Σ) under the tautological isomorphism

tΣ : RΣl ∼−→ HomR(Z l(Σ),R), ∆ 7→ (xσ 7→ ∆(σ)) .

By dualizing the quotient map Z l(Σ) � Z l(Σ)/
(
Z l(Σ) ∩ (IΣ + JΣ)

) ∼= Al(Σ)
in Proposition 3.1, the target of tΣ contains HomR(Al(Σ),R) as a subgroup.

Theorem 3.2. The isomorphism tΣ restricts to the isomorphism

MWl(Σ)
∼−→ HomR(Al(Σ),R)

Proof. The homomorphisms from Al(Σ) to R bijectively correspond to the
homomorphisms from Z l(Σ) to R that vanish on Z l(Σ)∩ (IΣ + JΣ) ⊆ Z l(Σ),
which is a subspace spanned by polynomials of the form ∑

ρ∈link(τ,Σ)(1)

〈uρ,m〉xρ

xτ (3.1)
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where τ ∈ Σ(l− 1) and m is an element perpendicular to 〈τ〉. It follows that
an l-dimensional weight ∆ corresponds to a homomorphism Al(Σ)→ R iff∑

τ⊆σ∈Σ(l)

∆(σ)〈uσ\τ ,m〉 = 0 for all m ∈ 〈τ〉⊥,

which is equivalent to the balancing condition on ∆ at τ since 〈τ〉⊥⊥ = 〈τ〉.

To prove that the polynomials (3.1) span Z l(Σ) ∩ (IΣ + JΣ), first, those
polynomials are generated by {xσ |σ ∈ Σ(l)} so they belong to Z l(Σ), and
as m ∈ 〈τ〉∨, ∑
ρ∈link(τ,Σ)(1)

〈uρ,m〉xρ

xτ =

 ∑
ρ∈Σ(1)

〈uρ,m〉xρ

xτ−

 ∑
ρ/∈star(τ,Σ)

〈uρ,m〉xρ

xτ ,

where the two terms of the right hand side belong to JΣ and IΣ, respectively.
Now let

aJ =
∑
m∈N∨

pm
∑
ρ∈Σ(1)

〈uρ,m〉xρ

be any element in JΣ such that aJ+aI ∈ Z l(Σ) for some aI ∈ IΣ. By choosing
a suitable aI we can assume that pm =

∑
τ∈Σ(l−1) ατ,mxτ , ατ,m ∈ R. So the

corresponding element in Z l(Σ) is a square-free polynomial∑
m∈N∨

∑
τ∈Σ(l−1)

ατ,mxτ
∑

ρ∈star(τ,Σ)(1)

〈uρ,m〉xρ,

where 〈uρ,m〉 must be zero for any ray ρ in τ . This is a linear combination
of polynomials (3.1).

The isomorphism

tΣ : MWl(Σ)
∼−→ HomR(Al(Σ),R), ∆ 7→ (xσ 7→ ∆(σ))

in Theorem 3.2 is an analogue of the Kronecker duality map in algebraic
topology that relates cohomology elements to homology elements. This iso-
morphism allows one to define the cap product by

Ak(Σ)×MWl(Σ)→ MWl−k(Σ), (ξ,∆) 7→ ξ ∩∆ := (σ 7→ (tΣ∆)(ξ · xσ)) ,

which makes MW•(Σ) a graded A•(Σ)-module.
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If Σ is complete, then a d-dimensional weight satisfies the balancing condition
iff it is constant. Therefore, in this case, MWd(Σ) ∼= R. We will see in
Proposition 3.7 that the Bergman fan of a matroid has the same property. If
the fan Σ satisfies MWd(Σ) ∼= R, then one can define the fundamental class
∆Σ to be its generator (unique up to scaling), and we have maps

δ : A•(Σ)→ MWd−•(Σ), ξ 7→ ξ ∩∆Σ.

In particular, noting that MW0(Σ) = R, we have the degree map∫
Σ

: Ad(Σ)→ R, ξ 7→ ξ ∩∆Σ.

The construction of Chow ring and Minkowski weights is functorial in the
following sense:

Definition 3.3. An inclusion of fans ι : Σ′ ↪→ Σ defines the pullback map ι∗,
which is a surjective map of graded R-algebras defined by

ι∗ : A•(Σ) � A•(Σ′), xρ 7→

{
xρ if ρ ∈ Σ(1) ∩ Σ′(1)

0 otherwise.

Dualizing the pullback map ι∗ gives us the pushforward map

ι∗ : MW•(Σ
′) ↪→ MW•(Σ), ∆′ 7→ (σ 7→ ∆′(σ) for σ ∈ Σ′ and 0 otherwise) .

3.1.2 Complete smooth fans

Because we can get the Chow ring and Minkowski weights of a smooth fan
as pullback respective pushforward of those of a complete fan, we consider
the complete smooth fans in the remaining part of this section.

A divisor D =
∑

ρ∈Σ(1) cρxρ ∈ A1(Σ) defines a piecewise linear function ϕD
that is linear on each cone of Σ by setting ϕD(uρ) = cρ. A divisor D is nef
if ϕD is a convex function on NR, i.e. ϕD(u) + ϕD(u′) ≥ ϕD(u + u′) for
any u,u′ ∈ NR. If further the inequalities ϕD(u) + ϕD(u′) ≥ ϕD(u + u′) are
strict whenever u,u′ are not in a common cone of Σ, we say that D is ample.
As conical combinations of nef (ample) divisors are nef (ample), they form a
cone KΣ (KΣ) in A1(Σ) called the nef (ample) cone of Σ. It is easy to check
that KΣ is the closure of KΣ and KΣ is the interior of KΣ. Nef divisors of Σ
correspond to a certain family of polytopes called deformations of Σ, which
are polytopes Q in N∨R whose outer normal fans ΣQ coarsen Σ. We denote
by Def(Σ) the set of deformations of Σ.
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Theorem 3.3. Let Σ be a smooth complete fan.

1. A nef divisor D =
∑

ρ∈Σ(1) cρxρ on Σ defines a deformation PD by

PD := {m ∈ N∨R | 〈uρ,m〉 ≤ cρ ∀ρ ∈ Σ(1)}

whereas a deformation P ⊂ N∨R of Σ defines a nef divisor

DP :=
∑
ρ∈Σ(1)

max
m∈P
{〈uρ,m〉}xρ.

2. Two nef divisors D =
∑

ρ∈Σ(1) cρxρ and D′ =
∑

ρ∈Σ(1) c
′
ρxρ are equal in

A1(Σ) iff PD and PD′ are parallel translates, and moreover, PD+D′ =
PD + PD′.

Proof. Let D =
∑

ρ∈Σ(1) cρxρ be a nef divisor on Σ. We want to show
that PD is a deformation of Σ. PD is bounded because of the smooth-
ness and completeness of Σ. The set of outer normal rays of facets is a
subset Σ(1). What is left to show is PD 6= ∅, i.e., the outer normal fan
of PD is complete. Divisor D is nef iff ϕD is a convex function on NR, iff
Q := {(x, y) ∈ NR × R |x ∈ NR, y ≥ ϕD(x)} is a convex set. It is known
that (0, 0) ∈ ∂Q as ϕD(0) = 0. Apply the isolation theorem on the in-
terior of Q and (0, 0), we know that there exists some w ∈ N∨R such that
〈(x, y), (w,−1)〉 = 〈x, w〉 − y ≤ 0 for all (x, y) ∈ Q. Such w must be in PD
as 〈uρ, w〉 ≤ ϕD(uρ) = cρ.
Now let P ⊂ N∨R be a deformation of Σ. Define cρ := max {〈uρ,m〉 |m ∈ P}.
The maximums exist because for any ρ ∈ Σ(1), m 7→ 〈uρ,m〉 is a linear
R-function, which is continuous, and the polytope P is a compact set. For a
point u =

∑n
i=1 αiuσi ∈ σ ⊂ NR, where uσi are the primitive ray generators

of σ ∈ Σ(n) and αi ≥ 0 for all i, we have

ϕD(u) =
n∑
i=1

αi max
m∈P
〈uσi ,m〉 = max

m∈P

〈
n∑
i=1

αiuσi ,m

〉
= max

m∈P
〈u,m〉,

where the second equality follows from the fact that P is a deformation of
Σ, so the maximum is attained by the vertex corresponding to the cone of
the outer normal fan of P containing σ. We check the convexity of ϕD:

ϕD(u + u′) = max
m∈P
〈u + u′,m〉 = max

m∈P
(〈u,m〉+ 〈u′,m〉)

≤ max
m∈P
〈u,m〉+ max

m∈P
〈u′,m〉 = ϕD(u) + ϕD(u′),
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for any u,u′ ∈ NR. Therefore such cρ define a nef divisor D on Σ.
Now we assume D =

∑
ρ cρxρ and D′ =

∑
ρ c
′
ρxρ to be equal in A1(Σ). That

is equivalent to D −D′ ∈
〈∑

ρ∈Σ(1)〈uρ,m〉xρ
∣∣∣m ∈ N∨〉, that is,

D−D′ =
∑
ρ∈Σ(1)

(cρ−c′ρ)xρ =
∑
m∈N∨

αm
∑
ρ∈Σ(1)

〈uρ,m〉xρ =
∑
ρ∈Σ(1)

〈
uρ,

∑
m∈N∨

αmm

〉
xρ

for some αm ∈ R where all but finitely many αm are zero. As
∑

m∈N∨ αmm ∈
N∨R could be any real linear combination of N∨, i.e., any element of N∨R , we
have that D = D′ in A1(Σ) iff cρ − c′ρ = 〈uρ, n〉 for some n ∈ N∨R . That is,

PD =
{
m ∈ N∨R

∣∣ 〈uρ,m〉 ≤ c′ρ + 〈uρ, n〉 ∀ρ ∈ Σ(1)
}

= {m ∈ N∨R | 〈uρ,m− n〉 ≤ cρ ∀ρ ∈ Σ(1)} = PD′ + n

for some n ∈ N∨R .
At last, PD+D′ = PD + PD′ , D = DPD and P = PDP can be checked easily.

In other words, giving Def(Σ) a structure of a cone by Minkowski sums, we
have a bijection

KΣ
∼←→ Def(Σ)/ ∼

via D 7→ PD and P 7→ DP , where P ∼ P ′ iff P = P ′ + n for some n ∈ N∨R .

Corollary 3.4. Any nef divisor D ∈ A1(Σ) is effective, i.e., it can be written
as a conical linear combination D =

∑
ρ∈Σ(1) cρxρ where cρ ≥ 0 for all ρ. In

particular, any ample divisor can be written as a positive linear combination
of xρ, ρ ∈ Σ(1).

Proof. We can assume PD with 0 ∈ relintPD by translating. The second
statement follows from the fact that KΣ is the interior of KΣ. Remark that
PD is full-dimensional when D is ample.

We have seen that a complete fan Σ satisfies MWd(R) ∼= R. We take the
fundamental class ∆Σ to be ∆Σ(σ) = 1 ∀σ ∈ Σ(n). The following main result
of [FS97] is a tropical geometric analogue of the Poincaré duality property
in algebraic topology.
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Theorem 3.5. For a smooth complete rational fan Σ, the cap product by ∆Σ

δ : A•(Σ)
∼−→ MW•(Σ) := MWd−•(Σ), ξ 7→ ξ ∩∆Σ

is an isomorphism as graded rings where MW•(Σ) is given a ring structure
by stable intersection of tropical cycles.

3.2 Chow Rings of Matroids

3.2.1 Chow rings of Bergman fans

For a loopless matroid M of rank r = d + 1 on a ground set E, recall that
the Bergman fan ΣM of M is the pure d-dimensional smooth rational fan
in (ZE/Z1)R consisting of cones σF := cone(uF1 , . . . ,uFk) for every flag of
nonempty proper flats F = (F1 ( . . . ( Fk) in M , where uF is the vector in
the quotient space RE/R1 corresponding to eF =

∑
i∈F ei ∈ RE.

Definition 3.4. The Chow ring A•(M) of a loopless matroid M is the Chow
ring A•(ΣM) of its Bergman fan ΣM . Explicitly,

A•(M) =
R[xF : F ∈ LM\{∅, E}]

〈xFxF ′ |F, F ′ incomparable〉+
〈∑

F⊇a xF −
∑

G⊇b xG
∣∣ a, b ∈ A(M)

〉 .
We call elements of A1(M) divisors on M , and denote by α :=

∑
F⊇a xF the

hyperplane class of M for any a ∈ A(M).

The Chow ring of a loopless matroid M was first studied in [FY04] in a
slightly different presentation

A•FY(M) :=
R[zF : F ∈ LM\{∅}]

〈zF zF ′ |F, F ′ incomparable〉+
〈∑

F⊇a zF
∣∣ a ∈ A(M)

〉 .
That is, we have xF = zF for every nonempty proper flat F ∈ LM , and
zE = −α. In this thesis, we always use the variable names xF for elements
in A•(M), and zF for elements in A•FY(M). For instance, in the summation∑

F⊇a xF we assume F ( E.

Remark. If M is representable and realized as a hyperplane arrangement
A, the wonderful compactification Y of the complement Y of A is a tropical
compactification of Y in the toric variety XΣM . It was shown in [FY04] that
the inclusion Y ↪→ XΣM induces a Chow equivalence A•(Y ) ∼= A•(XΣM ) ∼=
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A•(M). See [MS15; Den14; Fei05] for tropical and wonderful compactifica-
tions.

The Minkowski weights on a complete fan Σ satisfy MWd(ΣM) ∼= R. We
will show that the Bergman fans of matroids have the same property. The
following Lemma is a consequence of the shellability of ΣM [Bjö92].

Lemma 3.6. The Bergman fan ΣM is connected in codimension 1.

Proof. We will show that for any two d-dimensional cones σF , σG in ΣM ,
there is a sequence

σF = σ0 ⊃ τ1 ⊂ σ1 ⊃ · · · ⊂ σl−1 ⊃ τl ⊂ σl = σG,

where τi is a common facet of σi−1 and σi in ΣM . We express this by writing
σF ∼ σG.
We prove this by induction on the dimension d of ΣM . If minF = minG,
then the induction hypothesis applied to M/minF shows that σF ∼ σG. If
otherwise, we choose a flag of nonempty proper flats H maximal among those
satisfying minF ∪ minG ⊆ minH. By the induction hypothesis applied to
M/minF and M/minG respectively, we have

σF ∼ σ{minF}∪H and σG ∼ σ{minG}∪H,

Hence σF ∼ σG. Since any 1-dimensional fan is connected in codimension 1,
this completes the induction.

Proposition 3.7. A d-dimensional weight on ΣM satisfies the balancing con-
dition iff it is constant. Furthermore, MWd(ΣM) ∼= R.

Proof. The proof is based on the flat partition property (F2) for matroids M
on E: If F is a flat of M , then the flats of M that cover F partition E\F .
Let τG be a codimension 1 cone in the Bergman fan ΣM where G = (∅ (
G1 ( · · · ( Gd−1 ( E) is a flag of nonempty proper flats. Set G0 := ∅
and Gd := E. Let F1, . . . , Fm be the nonempty proper flats of M such that
(G0 ( · · · ( Gl−1 ( Fj ( Gl ( · · · ( Gd) is a full flag for each j = 1, . . . ,m.
The flat partition property is equivalent to

m∑
j=1

uFj = uGl + (m− 1)uGl−1
.

That means, ∑
ρ∈star(τG)(1)

uρ = 0 in (RE/R1)/〈τG〉
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and any proper subset of {uρ | ρ ∈ star(τG)(1)} is linearly independent. There-
fore, a d-dimensional weight ∆ on ΣM satisfies the balancing condition at τG
iff ∆ is constant on cones containing τG. By the connectedness of Lemma 3.6,
the latter condition for every τG implies that ∆ is constant.

The Bergman fan ΣM of a loopless matroid M of rank r = d + 1 satisfies
MWd(ΣM) ∼= R, thus we can take the fundamental class, called the Bergman
class, to be

∆M ∈ MWd(ΣM) where ∆M(σ) = 1 ∀σ ∈ ΣM(d),

and the degree map ∫
M

: Ad(ΣM)→ R, ξ 7→ ξ ∩∆M

of M . Explicitly, this map is determined by∫
M

xF1xF2 · · ·xFd = 1 for every maximal chain F1 ( · · · ( Fd in LM\{∅, E}.

Recall that the Bergman fan of the Boolean matroid U|E|,E on E = {0, . . . , n}
is the permutohedral fan ΣAn , which is a complete fan in RE/R1 with prim-
itive ray generators {uS : ∅ ( S ( E}. Note that the dual lattice of
N = ZE/Z1 is N∨ = 1⊥ :=

{
(y0, . . . , yn) ∈ ZE

∣∣∑n
i=0 yi = 0

}
. The fol-

lowing theorem is a specialization of Theorem 3.3, see also [AA17; BB11].

Theorem 3.8. The following are equivalent for a divisor D =
∑
∅(S(E cSxS ∈

A1(ΣAn):

1. D is a nef divisor on ΣAn,

2. the function c(·) : 2E → R satisfies the submodular property

cA + cB ≤ cA∪B + cA∩B for every A,B ⊆ E where c∅ = cE = 0,

3. the polytope PD = {m ∈ N∨R | 〈uS,m〉 ≤ cS ∀ ∅ ( S ( E} is a deforma-
tion of ΣAn,

4. every edge of PD is parallel to ei − ej for some i 6= j ∈ E.

Given a submodular function c(·) : 2E → Z with c∅ = 0 but cE possibly
nonzero, the generalized permutohedron associated to c(·) is the polytope

P (c) :=
{
y ∈ (RE)∨

∣∣ 〈1, y〉 = cE and 〈eS, y〉 ≤ cS ∀ ∅ ( S ( E
}
.
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This polytope lives in an affine translate of N∨R in RE. We can translate a gen-
eralized permutahedron P (c) to N∨R to get the polytope PD in Theorem 3.8
as follows: Fix an element i ∈ E, and consider

P (c)−cEei = {m ∈ N∨R | 〈uS,m〉 ≤ cS − cE ∀S 3 i and 〈uS,m〉 ≤ cS ∀S 3/ i} .

In other words, the nef divisor in A1(ΣAn) that the polytope P (c) corresponds
to is

−cEα +
∑
∅(S(E

cSxS =
∑
∅(S⊆E

cSzS ∈ A•FY(ΣAn).

Now, for a loopless matroidM on E = {0, . . . , n}, we have an inclusion of fans
ιM : ΣM ↪→ ΣAn , and the pushforward map ιM∗ : MW•(ΣM) ↪→ MW•(ΣAn)
defines the Bergman class ∆M of M as an element of MWd(ΣAn). Moreover,
we have the pullback map

ι∗M : A•(ΣAn) � A•(ΣM), xS 7→

{
xS if ∅ ( S ( E is a flat of M,

0 otherwise.

For ∅ ( S ( E, we may need to clarify whether a variable xS is an element
of A•(M) or A•(ΣAn). We thus often denote

xS(M) := ι∗MxS,

in which case xS is considered as an element of A•(ΣAn) and xS(M) ∈ A•(M).

3.2.2 The simplicial presentation

Now we define the third presentation of the Chow ring of a matroid, called the
simplicial presentation, which is introduced in [BES19]. This presentation is
nothing else but an upper triangular linear change of variables in A•(M).
However, it has an excellent combinatorial interpretation that can be used
to deduce the Poincaré duality property from that of the Chow ring of the
permutohedral variety.

For a subset S of E = {0, . . . , n}, denote by

∇S := conv{−ei : i ∈ S} ⊂ RE
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the negative standard simplex of S. Remark that

∇S =

{
x ∈ RE

∣∣∣∣∣∑
i∈S

xi = −1, xi = 0∀i /∈ S, xi ≤ 0 ∀i

}
=
{
x ∈ RE

∣∣x · 1 = −1, x · eT ≤ cT
}

where cT = −1 for all T ⊇ S and 0 otherwise. As the edges of ∇S are
parallel translates of ei − ej for i 6= j ∈ S, Theorem 3.8 implies that ∇S is a
deformation of ΣAn whose corresponding nef divisor is

hS := α +
∑
∅(T(E

cTxT = α−
∑

S⊆T(E

xT = −
∑
T⊇S

zT ∈ A•FY(ΣAn).

Now we consider the presentation of A•(M) given by pullbacks of these nef
divisors of standard simplices. For M a loopless matroid on E and ∅ 6= S ⊆
E, denote hS(M) := ι∗MhS. If F ∈ LM is the closure of S, we have

hS(M) := ι∗MhS = −
∑
T⊇S

zT (M) = −
∑

F⊆G∈LM

zG(M) = ι∗MhF ,

as zT (M) = ι∗MhT = 0 for all T ⊆ E not a flat of M . We will write simply
hF for hF (M) when there is no confusion.

Definition 3.5. For M a loopless matroid on E, the simplicial presentation
A•∇(M) of the Chow ring of M is the presentation of A•(M) whose generators
are {hF : F ∈ LM\{∅}} where

hF := −
∑
G⊇F

zG ∈ A•FY(M).

The linear change of variables from {zF : F ∈ LM\{∅}} to {hF : F ∈ LM\{∅}}
is given by an upper triangular matrix, thus is invertible by the Möbius in-
version

−zF =
∑
G⊇F

µ(F,G)hG

where µ is the Möbius function on the lattice LM . Thus, the explicit presen-
tation of A•∇(M) is

A•∇(M) := R [hF : F ∈ LM\{∅}] /(I + J)

where

I =

〈(∑
G⊇F

µ(F,G)hG

)(∑
G′⊇F ′

µ(F ′, G′)hG′

)
: F, F ′ incomparable

〉
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and
J = 〈ha : a ∈ A(M)〉 .

Denote by L≥2
M the set of flats of M of rank at least 2. Noting that ha = 0 ∈

A•∇(M) for any a ∈ A(M). We define
{
hF : F ∈ L≥2

M

}
to be the simplicial

generators of the Chow ring of M .

In [FY04], a Gröbner basis for the defining ideal of A•FY(M) is given. Pick
a total order on elements of LM such that F > G if rkM(F ) ≤ rkM(G), and
take the induced lex monomial order on A•FY(M).

Theorem 3.9 ([FY04], Theorem 1). The following form a Gröbner basis for
the ideal of A•FY(M):

zF zG F,G incomparable

zF
(∑

H⊇G zH
)rk(G)−rk(F )

F ( G(∑
H⊇G zH

)rk(G)
G ∈ LM\{∅}.

This Gröbner basis computation carries over to the simplicial presentation
easily.

Proposition 3.10. The following is a Gröbner basis for the defining ideal
of A•∇(M) with respect to the lex monomial ordering induced by >:

(∑
G⊇F µ(F,G)hG

) (∑
G′⊇F ′ µ(F ′, G′)hG′

)
F, F ′ incomparable(∑

G⊇F µ(F,G)hG
)
h

rk(F ′)−rk(F )
F ′ F ( F ′

h
rk(F )
F F ∈ LM\{∅}.

Proof. Let SFY := R [zF : F ∈ LM\{∅}] and S∇ := R [hF : F ∈ LM\{∅}],
and define ϕ : SFY → S∇ to be the substitution zF 7→ −

∑
G⊇F µ(F,G)hG.

Observe that ϕ is lower triangular with −1’s on the diagonal when the vari-
ables zF and hF are written in descending order with respect to >. Hence,
if f ∈ S with initial monomial ze1F1

· · · zekFk , then the initial monomial of ϕ(f)
is he1F1

· · ·hekFk . The proposition follows from the fact that the elements of the
Gröbner basis above are the images under ϕ of the elements of the Gröbner
basis given in Theorem 3.9.

As a result, we obtain an R-basis of A•∇(M) consisting of monomials that are
not initial in the Gröbner basis.
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Corollary 3.11. For c ∈ Z≤0, a monomial R-basis for the degree c part
Ac∇(M) of the Chow ring A•∇(M) of a matroid M is{
ha1F1
· · ·hakFk

∣∣∣∑ ai = c, ∅ = F0 ( F1 ( · · · ( Fk, 1 ≤ ai < rk(Fi)− rk(Fi−1)
}
.

We call this basis of A•∇(M) the nested basis of the Chow ring of M .

3.3 Combinatorial Interpretations of the Chow

Ring

3.3.1 Matroid quotients, matroid intersections and sim-
plicial generators

Definition 3.6. Let M and M ′ be matroids on a common ground set E. M ′

is a (matroid) quotient of M , written f : M � M ′, if any of the following
equivalent conditions hold:

1. There is a matroid N on E ′ ⊇ E such that M = N\(E ′\E) and
M ′ = N/(E ′\E),

2. every flat of M ′ is also a flat of M ,

3. the Bergman fan ΣM ′ is a subfan of ΣM ,

4. rkM ′(B)− rkM ′(A) ≤ rkM(B)− rkM(A) for every A ⊆ B ⊆ E,

5. every circuit of M is a union of circuits of M ′,

6. for all A ⊆ E, clM(X) ⊆ clM ′(X).

Remark that M ′ is a quotient of M iff M and M ′ are on the same ground
set E and the identity map on E is a strong map M �M ′. Any matroid M
on E is a quotient of the Boolean matroid U|E|,E as the Bergman fan of ΣM

is a subfan of ΣAn = ΣU|E|,E .

By definition, a matroid quotient f : M � M ′ defines an inclusion of fans
ιf : ΣM ′ ↪→ ΣM , defining an injective pushforward ιf∗ : MW•(ΣM ′) ↪→
MW•(ΣM), which is aA•(M)-module map via the pullback map ι∗f : A•(M) �
A•(M ′). For ∆ ∈ MW•(ΣM ′), we write ∆(M ′) := ∆ ∈ MW•(ΣM ′) and
∆(M) := ιf∗∆ ∈ MW•(ΣM) when we need to distinguish between consid-
ering it as an element of MW•(ΣM ′) and MW•(ΣM). For example, that
the pushforward map ιf∗ is a A•(M)-module map reads xF (M ′) ∩∆(M ′) =
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xF (M) ∩∆(M) for F ∈ LM .

Definition 3.7. For a matroid quotient f : M �M ′, the f -nullity of A ⊆ E
is

nf (A) := rkM(A)− rkM ′(A).

We say that M ′ is an elementary (matroid) quotient of M if nf (E) = 1, or
equivalently if rk(M ′) = rk(M)− 1.

A remarkable property of matroid quotients is given in [Hig68], which states
that any matroid quotient can be factorized into a sequence of elementary
quotients.

Proposition 3.12. Any matroid quotient f : M � M ′ has a canonical
factorization into elementary quotients

M = Mc � · · ·�M1 �M0 = M ′

called the Higgs factorization of f , whose constituent matroids Mi can be
described in two equivalent ways:

1. by the bases: B(Mi) = {A ⊆ E |A ∈ S(M ′) ∩ I(M), |A| = rk(M ′) + i},

2. inductively by the flats: LMi+1
= LMi

∪{F ∈ LM | rkM(F ) = rkMi
(F )}.

The elementary quotients are cryptomorphic to modular cuts.

Definition 3.8. A modular cut of a matroid M is a nonempty collection of
flats K ⊆ LM satisfying

1. if F1 ∈ K and F2 ⊇ F1, then F2 ∈ K, and

2. if F1, F2 ∈ K and rkM(F1) + rkM(F2) = rkM(F1 ∨ F2) + rkM(F1 ∧ F2),
then F1 ∧F2 ∈ K, where ∨ and ∧ are the join and meet in LM , respec-
tively.

Proposition 3.13. The elementary quotients of M correspond bijectively to
the modular cuts of M as follows: Given a matroid M and a modular cut K
of M , we obtain an elementary quotient M �M ′ by taking

LM ′ := {F ∈ LM : F is not covered by an element of K} ∪ K.

Conversely, given an elementary quotient f : M � M ′, one recovers the
modular cut K of M defining the quotient M �M ′ by

K = {F ∈ LM ′ : nf (F ) = 1} .
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We denote by M
K−→→ M ′ the elementary quotient of M given by a modular

cut K of M . The following characterizations of Higgs factorization in terms
of modular cuts are given in [KK78].

Proposition 3.14. Let f : M � M ′ be a matroid quotient on E with

nf (E) = c. The following are equivalent for a factorization M = Mc
Kc−→→

· · · K2−→→M1
K1−→→M0 = M ′ of f into elementary quotients:

1. M = Mc
Kc−→→ · · · K2−→→M1

K1−→→M0 = M ′ is the Higgs factorization of f ,

2. K′c ⊆ · · · ⊆ K′2 ⊆ K′1 where K′i = {A ⊆ E : clMi
(A) ∈ Ki} and

Ki = K′i ∩ LMi
,

3. Ki = {F ∈ LMi
: nf (F ) ≥ i} for i = 1, · · · , c.

Note that for any F ∈ LM , the interval [F,E] ⊆ LM forms a modular cut
of M , and we call the resulting elementary quotient, denoted TF (M), the
principal truncation of M associated to F .

Proposition 3.15. The principal truncation TF (M) of a matroid M asso-
ciated to F ∈ LM has bases

B (TF (M)) = {B\f : B ∈ B(M), f ∈ B ∩ F 6= ∅} .

Definition 3.9. For two matroids M,N on a common ground set E, the
matroid intersection of M and N is a matroid M ∧N on E whose spanning
sets are

S(M ∧N) = {S ∩ S ′ |S ∈ S(M), S ′ ∈ S(N)} .

Matroid intersection behaves well in relation to Minkowski weights. Re-
call that two loopless matroids M,N define Minkowski weights ∆M ,∆N ∈
MW•(ΣAn). By Theorem 3.5, one can consider the product ∆M ·∆N under
the identification MW•(ΣAn) ∼= A•(ΣAn).

Proposition 3.16 ([Spe08]). For loopless matroids M,N on a common
ground set E, we have

∆M ·∆N =

{
∆M∧N if M ∧N is loopless,

0 otherwise.

For S ⊆ E, we denote by HS the matroid with bases

B(HS) = {E\i : i ∈ S} ,
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or equivalently, HS = U|E\S|,E\S ⊕ U|S|−1,S. By comparing with the bases
given in Proposition 3.15, we have the following connection between princi-
pal truncations and matroid intersections.

Proposition 3.17. Let M be a loopless matroid on E, and let S ⊆ E and
F = clM(S) the closure of S in M . Then

TF (M) = M ∧HS

A nef divisor D ∈ A1(Σ) on a complete fan Σ corresponds via Theorem 3.5
to a Minkowski weight δ(D) ∈ MW1(Σ) of codimension one. The following
description of δ(D) can be found in Proposition 3.3.2 & Theorem 6.7.7 in
[MS15].

Theorem 3.18. Let ∆Σ be the fundamental class of the complete fan Σ,
and D a nef divisor on Σ such that PD is a lattice polytope. Then we have
δ(D) = D ∩∆Σ = ∆PD where for each τ ∈ Σ(n− 1), we have

∆PD(τ) =

{
l(PD(σ)) if there is σ ∈ ΣPD(n− 1) such that |τ | ⊆ |σ|,
0 otherwise,

where l(PD(σ)) denotes the lattice length of the edge of PD corresponding to
σ, i.e. the number of lattice points minus 1.

The following two lemmas convey the geometry origin of the presentation
A•∇(M): Multiplying with hF corresponds to the principal truncation by F ,
which is, when realizable and realized as hyperplane arrangements, inter-
secting by a general hyperplane containing the subspace corresponding to F .
The notation “h” stands therefore for “hyperplane”.

Lemma 3.19. For ∅ 6= S ⊆ E, consider hS ∈ A•∇(ΣAn). We have

hS ∩∆U|E|,E = ∆HS .

Proof. Observe that the translating of the polytope ∇S of the nef divisor hS
by 1 gives

∇S + 1 = conv(eE\i : i ∈ S) ⊂ RE,

which is the matroid base polytope P(HS) of the matroid HS. That is, we
have hS = DP(HS) as in Theorem 3.3. As the edges of matroid base polytopes
are parallel translates of ei − ej by Theorem 2.7, and hence their lattice
length are all equal to 1. Thus, Theorem 3.18 implies that hS ∩ ∆U|E|,E =
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∆P(HS) ∈ MW1(ΣAn) where ∆P(HS) = 1 if σ is contained in some cone of
same dimension in the normal fan ΣP(HS) and 0 otherwise.
Because the Bergman class ∆HS has the weight 1 or 0 as well, what is left to
show is that ΣHS and the codimension 1 skeleton ΣP(HS)(n−1) of the normal
fan ΣP(HS) have the same support. We have |ΣUn−1,n| = |ΣP(Un−1,n)(n− 1)| ⊂
Rn/R1, because P(Un−1,n) is an (n − 1)-dimensional simplex whose edge
conv{1− ei,1− ej}, i 6= j ∈ [n] has outer normal cone as union of (n− 1)-
dimensional cones of ΣUn−1,n corresponding to the flags with maximal element
[n]\{i, j}. Then our desired equality |ΣHS | = |ΣP(HS)(n − 1)| follows from
observing that HS = U|E\S|,E\S ⊕U|S|−1,S. Remark that LM⊕M ′ ∼= LM ×LM ′
and P(M ⊕M ′) = P(M)× P(M ′).

Lemma 3.20. Let hS ∈ A•∇(U|E|,E) for ∅ 6= S ⊆ E, and let M be a loopless
matroid on E. Let F = clM(S) be the closure of S in M . We have

hS ∩∆M = ∆TF (M) and hF (M) ∩∆M(M) = ∆TF (M)(M).

Proof. We have

hS ∩∆M = hS ∩
(
x ∩∆U|E|,E

)
= (hS · x) ∩∆U|E|,E

=
(
hS ∩∆U|E|,E

)
·
(
x ∩∆U|E|,E

)
=
(
hS ∩∆U|E|,E

)
·∆M

= ∆HS ·∆M = ∆HS∧M = ∆TF (M).

The first, the third and the fourth equalities follow from the Poincaré duality
isomorphism δ in Theorem 3.5 where we set x := δ−1(∆M). The second
equality follows from the Kronecker duality in Theorem 3.2 and the definition
of the cap product. And the fifth, sixth and seventh equalities follow from
Lemma 3.20, Proposition 3.16 and Proposition 3.17, respectively.
The second equation is a consequence of ιM∗ being a A•(ΣAn)-module map
via the pullback map ι∗M : A•(ΣAn) � A•(M).

3.3.2 Nested basis and relative nested quotients

Recall that from Corollary 3.11,{
ha1F1
· · ·hakFk

∣∣∣∑ ai = c, ∅ = F0 ( F1 ( · · · ( Fk, 1 ≤ ai < rk(Fi)− rk(Fi−1)
}

is a monomial R-basis for the degree c part Ac∇(M) of A•∇(M). This basis
of A•∇(M) is called the nested basis of the Chow ring of M . We will show
that these monomials in the basis allow for a combinatorial interpretation as
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a distinguished set of matroid quotients of M .

Definition 3.10. Let f : M �M ′ be a matroid quotient on a ground set E.
An f -cyclic flat of f is a flat F ∈ LM ′ such that F is minimal (with respect
to inclusion) among the flats F ′ ∈ LM ′ such that nf (F

′) = nf (F ). The set of
f -cyclic flats is denoted by cyc(f). A matroid M ′ is a relative nested quotient
of M if the f -cyclic flats of M ′ form a chain.

Proposition 3.21. The data of the f -cyclic flats, their f -nullities and the
matroid M determine the quotient f : M �M ′.

Proof. Let c = nf (E). We show that from the data given, one can recover

the Higgs factorization M = Mc
Kc−→→ · · · K2−→→ M1

K1−→→ M0 = M ′ of f . By
Proposition 3.14, the modular cuts Ki are given as follows for all i = 1, · · · , c:

Ki = {G ∈ LMi
: nf (G) ≥ i}

= {G ∈ LMi
: G ⊇ F for some F ∈ cyc(f) with nf (F ) ≥ i}.

In other words, we have recovered the modular cuts defining the Higgs fac-
torization of M �M ′ from the given data.

We now show that the nested basis of A•∇(M) is in bijection with the set of
relative nested quotients of M , moreover, the bijection respects linear inde-
pendence.

Theorem 3.22. Let M be a loopless matroid of rank r = d + 1. For each
0 ≤ c ≤ d, the cap product map

Ac∇(M)→ MWd−c(ΣM), ξ 7→ ξ ∩∆M

induces a bijection between the monomial basis for Ac∇(M) given in Corol-
lary 3.11 and the set of Bergman classes ∆M ′ of loopless relative nested quo-
tients M ′ �M with rk(M ′) = rk(M)− c.

Proof. Let ha1F1
· · ·hakFk be an element of the monomial basis given in Corol-

lary 3.11. By Lemma 3.20, Proposition 3.17 and Proposition 3.16, we have

ha1F1
· · ·hakFk ∩∆M = ∆a1

TF1 (M) · · ·∆
ak
TFk (M) = ∆a1

M∧HF1
· · ·∆ak

M∧HF1
= ∆M ′(M),

where

M ′ = M ∧ak HFk · · · ∧a1 HF1 := M ∧HFk ∧ · · · ∧HFk︸ ︷︷ ︸
ak times

∧ · · · ∧HF1 ∧ · · · ∧HF1︸ ︷︷ ︸
a1 times

.



50 CHAPTER 3. CHOW RINGS

By Proposition 3.17, f : M ′ � M is a matroid quotient with Higgs factor-
ization

M
[Fk,E]−−−→→ · · · [Fk,E]−−−→→︸ ︷︷ ︸

ak times

· · · [F1,E]−−−→→ · · · [F1,E]−−−→→︸ ︷︷ ︸
a1 times

M ′.

The description of modular cuts in Proposition 3.13 implies that cyc(f) =
{F1, . . . , Fk} and nf (Fj) =

∑j
i=1 ai. The inequalities 1 ≤ ai < rk(Fi) −

rk(Fi−1) ensure that Fi is a flat in M ∧akHFk · · ·∧ai+1HFi+1
, and in particular

rk(F1)− a1 > 0 ensures loopless.
Conversely, from the construction given in the proof of Proposition 3.21,
one sees that if f : M ′ � M is a loopless nested matroid quotient with
cyc(f) = {F1 ( · · · ( Fk}, then M ′ = M ∧ak HFk · · · ∧a1 HF1 where aj =
nf (Fj)− nf (Fj−1) for j > 1, and a1 = nf (F1).

Proposition 3.23. The elements

{∆M ′ : M ′ is a loopless relative nested quotient of M}

are linearly independent in MW•(ΣAn).

Proof. For a loopless relative nested matroid quotient f : M ′ �M of corank
c = rk(M) − rk(M ′) given by f -cyclic flats ∅ = F0 ( F1 ( · · · ( Fk with
ranks ri := rkM ′(Fi), i = 0, . . . , k, define

γ(f) := (di)i=1,...,r, di :=

{
ri − ri−1 if i ≤ k,

0 otherwise.

Denote by Mr the set of loopless relative nested matroid quotients f : M ′ �
M of rank rk(M ′) = r.
Assume that we have a linear relation∑

f :M�M ′∈Mr

aM ′∆M ′ = 0,

we show by lexicographic induction on γ(f) that a′M = 0 for any M ′ ∈Mr.
For the base case, consider the case of f : M ′ � M with f -cyclic flats
∅ = F0 ( F1 ( · · · ( Fk satisfying

γ(f) = (1, . . . , 1︸ ︷︷ ︸
k many

, 0, . . . , 0).

Extend the chain of f -cyclic flats of M ′ to any maximal chain of flats in
M ′, and consider a loopless relative nested matroid quotient g : N ′ � M
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also containing this chain as a maximal chain of flats. We show that N ′ =
M ′. Note that by construction rkN ′(Fi) = rkM ′(Fi) for all 0 ≤ i ≤ k.
By induction assume F0, . . . , Fj−1 are g-cyclic. If Fj is not g-cyclic, then
it contains a g-cyclic flat G with the same g-nullity as that of Fj. But
then ng(G) = ng(Fj) = nf (Fj) > nf (Fj−1) = ng(Fj−1), implies G ) Fj−1,
which contradicts rkN ′(G) < rkN ′(Fj) = rkN ′(Fj−1) + 1. Thus, all Fi’s are
g-cyclic as well with rkN ′(Fi) = i, and there are no other g-cyclic flats since
nf (E) = ng(E). This means that M ′ is the unique element in Mr such that
the (r − 1)-dimensional cone corresponding to the maximal flag is in the
support of ∆M ′ , which implies aM ′ = 0.
Now suppose γ(f) = (d1, . . . , dr) > (0, . . . , 0) and consider g : N ′ � M that
has a maximal chain of flats that is also a maximal chain in LM ′ containing
the f -cyclic flats. We show that N ′ 6= M ′ then γ(g) <lex γ(f), thereby
completing the induction to conclude that aM ′ = 0 for any M ′ ∈Mr.
Let γ(g) = (c1, . . . , cr), and suppose 1 ≤ j ≤ k is the minimum j such that
Fj is not g-cyclic, which exists since N ′ 6= M ′. By the same arguments given
in the case of γ(f) = (1, . . . , 1, 0, . . . , 0), we then have a g-cyclic flat G such
that Fj−1 ( G ( Fj, which decreases cj by at least one. Hence, γ(g) < γ(f),
as desired.

Example 3.24 (U3,4). Let M = U3,4 be the rank 3 uniform matroid on
E = {1, 2, 3, 4}. The following are the geometric representation as the affine
plane F2

2, the lattice of nonempty proper flats and the Bergman fan in R4/R1.

1 2 3 4

12 13 14 23 24 34

1

2 3

4

The Chow ring A•(M) = A0(M) ⊕ A1(M) ⊕ A2(M) is the polynomial ring
R[x1, x2, x3, x4, x12, x13, x14, x23, x24, x34] modulo the ideal generated by the
squarefree quadratic monomials

x1x2, x1x3, . . . , x3x4, x12x13, x12x14, . . . , x24x34, x1x23, x1x24, x1x34, . . . , x4x23
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and the linear forms

x1+x13+x14−x2−x23−x24, x1+x12+x14−x3−x23−x24, x1+x12+x13−x4−x24−x34.

As the three linear forms are linearly independent, we have dimA1(M) =
10− 3 = 7 and dimA0(M) = dimA2(M) = 1.
The Minkowski weights satisfy MW0(M) ∼= MW2(M) ∼= R, and MW1(M) is
the solution space of

1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

x = λ


1
1
1
1

 ,

where λ ∈ R. Therefore, dim MW1(M) = 7, as desired. The cap product
xF ∩∆M ∈ MW1(M) maps a flat F ′ ∈ LM\{∅, E} to 1 if F 6= F ′ comparable,
to 0 if F, F ′ are incomparable, to −1 if F = F ′ is of rank 2, and to −2 if
F = F ′ is of rank 1.
The nested basis of A1

∇(M) is {h12, h13, h14, h23, h24, h34, hE}. One computes
that h12 = −z12 − zE = x1 + x13 + x14 and

h12 ∩∆M(F ) = 1 if F ∈ {12, 3, 4} and 0 otherwise.

This is exactly the Bergman class of the relative nested quotient T12(M) of
M given by the modular cut {12, E}. And the Minkowski weight hE ∩∆M

maps a nonempty proper flat F to 1 if F ∈ {1, 2, 3, 4} and 0 otherwise,
it is the Bergman class of the truncation TE(M). Moreover, one sees that
h12∩∆M , . . . , hE∩∆M are linearly independent as every flat F ∈ LM of rank
2 is only in the support of hF ∩∆(M).



Chapter 4

Hodge Theory of Matroids

4.1 Poincaré Duality

Let X be a compact orientable connected manifold of dimension d, and let
Hi(X) and H i(X) be the i-th singular homology and cohomology space with
coefficients in R, respectively. The Poincaré duality theorem states that a
choice of a fundamental class [X] ∈ Hd(X) such that Hd(X) ∼= R{[X]} in-
duces isomorphisms Hk(X)

∼−→ Hd−k(X), ϕ 7→ ϕ ∩ [X]. Equivalently, there
are non-degenerate pairings Hk(X) × Hd−k(X) → H0(X) = R, (ϕ, ψ) 7→
(φ ∪ ψ) ∩ [X], where ∪ and ∩ are the cup and cap product, respectively.
This property is the first component of the Kähler package. In this section
we will show that it is satisfied by the Chow ring of a matroid as well. We
refer to [Hat02] for the background in algebraic topology and [MS+05] for
an abstract theory.

Definition 4.1. A graded finite (commutative) K-algebra A• =
⊕d

i=0A
i is

a (graded) Poincaré duality algebra of dimension d if

(1) A0 = K, and

(2) there exists a K-linear isomorphism
∫

: Ad
∼−→ K, called the degree map

of A•, such that

Ai × Ad−i → Ad
∼−→ K, (a, b) 7→

∫
ab

is a non-degenerate pairing for all 0 ≤ i ≤ d.

The second condition is equivalent to

53



54 CHAPTER 4. HODGE THEORY OF MATROIDS

(2’) the map Ak → Hom(Ad−k,K), ξ 7→ (ζ 7→
∫
ξ · ζ) is a K-isomorphism

for all 0 ≤ k ≤ d.

By Theorem 3.5, the Chow ring A•(Σ) of a smooth complete rational fan Σ
is a Poincaré duality algebra with degree map

∫
Σ

.

Definition 4.2. Given a commutative ring R and f ∈ R, the f -transport of
R, denoted by 〈f〉 by abuse of notation, is a ring whose elements are those
of the principal ideal 〈f〉 ⊂ R with multiplication defined by af · bf = (ab)f .
That is,

〈f〉 ∼= R/AnnR(f), where AnnR(f) := {r ∈ R | rf = 0} .

The ring 〈f〉 comes with a natural surjection R � 〈f〉 of rings and an injec-
tion 〈f〉 ↪→ R of R-modules.

Proposition 4.1. If (A•,
∫

) is a Poincaré duality algebra of dimension d,
and f ∈ A• is a homogeneous element of degree k, then the f -transport 〈f〉 of
A• is a Poincaré duality algebra of dimension d− k with the induced degree
map

∫
f

defined as
∫
f
(a+ Ann(f)) :=

∫
af for a ∈ Ad−k.

Proof. If
∫
f
(af · bf) =

∫
f
(ab)f =

∫
abf = 0 for all a ∈ Ai, equivalently, for

all af ∈ 〈f〉i, then bf = 0 by the Poincaré duality property of (A•,
∫

).

Let M be a loopless matroid of rank r = d + 1 on a ground set E =
{0, . . . , n}. We show that the Chow ring A•(M) is the ∆M -transport of
A•(Xn) ∼= MW•(ΣAn) and conclude that it is a Poincaré duality algebra.
This is a consequence of Theorem 3.22: first show that the cap product

map A•∇(M)
·∩∆M−−−→ MWd−•(ΣM)

ιM∗
↪−−→ MWd−•(ΣAn) factors as A•∇(M) �

〈∆M〉 ↪→ MWd−•(ΣAn), and the injectivity follows from Proposition 3.23.

Proposition 4.2. We have the following commutative diagram of graded
algebras:

A•(ΣAn) MW•(ΣAn) xS xS ∩∆ΣAn

A•(M) 〈∆M〉 MWd−•(ΣAn) xS(M) xS ∩∆M

∼

ι∗M

Proof. The right vertical map is the canonical surjective map from the ring
MW•(ΣAn) to the ∆M -transport 〈∆M〉, which also canonically injects into
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MW•−(n−d)(ΣAn) = MWd−•(ΣAn). The left vertical map ι∗M is the pullback
map, and the top horizontal isomorphism is the cap product with ∆ΣAn

, as in
Theorem 3.5. We now construct the bottom horizontal map as the canonical
ring map induced from the fact that the kernel of A•(ΣAn) � 〈∆M〉 contains
the kernel of ι∗M : A•(ΣAn) � A•(M), which is exactly the quotient map

ι∗M : A•(ΣAn) � A•(ΣAn)/〈xS : ∅ ( S ( E is not a flat of M〉.

What is left to compute is xS ∩ ∆M = 0 if S is not a flat of M . For a
(d− 1)-dimensional cone σF ∈ ΣM(d− 1) corresponding to a flag F = (∅ (
F1 ( · · · ( Fd−1 ( E) of d − 1 proper flats in M , the Minkowski weight
xS ∩ ∆M assigns the value (tΣM∆M)(xSxF1 · · ·xFd−1

) to the cone σF . As S
is a not a flat of M , either S is incomparable to some Fi or S fits into a
chain FS := (F1 ( · · · ( Fi ( S ( Fi+1 ( · · · ( Fd−1). In the first case the
monomial xSxF1 · · ·xFd−1

is zero in A•(ΣAn), and in the second case we have
∆M(σFS) = 0 as FS is not a chain of flats in M .
Thus, we have ker (A•(ΣAn) � A•(M)) ⊆ ker (A•(ΣAn) � 〈∆M〉), so that
we have the induced canonical surjective map A•(M) � 〈∆M〉 defined by
xF (M) 7→ xF ∩∆M .

Corollary 4.3. In the simplicial presentation, the diagram of Proposition 4.2
is

A•∇(ΣAn) MW•(ΣAn) hS ∆HS

A•∇(M) 〈∆M〉 MWd−•(ΣAn) hclM (S) ∆TclM (S)(M)

∼

ι∗M

Proof. It follows from Lemma 3.20.

Theorem 4.4. The Chow ring A•(M) is the ∆M -transport of MW•(ΣAn) ∼=
A•(ΣAn).

Proof. The surjective ring map A•∇(M) � 〈∆M〉 is an isomorphism of R-
vector spaces as the bijection by cap product with ∆M preserves linear inde-
pendence, which is shown in Proposition 3.23.

Corollary 4.5. The Chow ring A•(M) is a graded Poincaré duality algebra
of dimension rk(M)− 1 with

∫
M

as the degree map.

Proof. It follows from Theorem 3.5, Proposition 4.1 and Theorem 4.4.
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Corollary 4.6. For each 0 ≤ c ≤ d, the cap product map

Ac(M)→ MWd−c(ΣM), ξ 7→ ξ ∩ ΣM

is an isomorphism of R-vector spaces. Thus, the Bergman classes of relative
nested quotients form a basis of MW•(ΣM).

Proof. By Corollary 4.5 and Theorem 3.2, we have the isomorphisms

Ac(M)
∼−→ Hom(Ad−c(M),R)

∼−→ MWd−c(ΣM),

ξ 7→
(
ζ 7→

∫
M

ζ · ξ = (ζ · ξ) ∩∆M = ζ ∩ (ξ ∩∆M)

)
7→ ξ ∩∆M .

The second statement follows from Theorem 3.22.

4.2 The Volume Polynomial

4.2.1 The volume polynomial of a matroid

Definition 4.3. Let (A•,
∫

) be a graded Poincaré algebra of dimension d that
is generated in degree 1, with a chosen presentation A• = K[x1, . . . , xs]/I and
a degree map

∫
: Ad → K. Then its volume polynomial VPA is a multivariate

polynomial in K[t1, . . . , ts] defined by

VPA(t1, . . . , ts) :=

∫
(t1x1 + . . .+ tsxs)

d,

where we extend the degree map
∫

to A[t1, . . . , ts] → K[t1, . . . , ts]. As a
function A1 → K, this polynomial is the volume function

volA : A1 → K, ` 7→
∫
`d.

We remark the following properties from [CLS11, §13.4]: If Σ is a smooth
complete fan and D a nef divisor on Σ, then volA•(Σ)(D) is the normalized
volume of the deformation PD. If (A•,

∫
) is a Poincaré duality algebra with

a chosen presentation A• = K[x1, . . . , xs]/I, then the defining ideal I can be
recovered from the volume polynomial VPA by

I =

{
f(x1, . . . , xs) ∈ K[x1, . . . , xs]

∣∣∣∣ f ( ∂

∂t1
, . . . ,

∂

∂ts

)
· VPA(t1, . . . , ts) = 0

}
.
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In this section, we deduce the formula for the volume polynomial VP∇M of
A•∇(M). Let E = {0, . . . , n}. A transversal of a family (repetitions allowed)
{A0, . . . , Am} of subsets of E is a subset I ⊆ E such that there exists a
bijection φ : {A0, . . . , Am} → I satisfying φ(Ai) ∈ Ai for all 0 ≤ i ≤ m.
The following is a classic theorem of Rado which generalizes Hall’s marriage
theorem.

Theorem 4.7 (Rado’s theorem). Let M be a matroid on E. A family of
subsets {A0, . . . , Am} of E has a transversal I ⊆ E that is independent in M
iff

rkM

(⋃
j∈J

Aj

)
≥ |J |, ∀J ⊆ {0, . . . ,m}. (4.1)

Proof. If the family {A0, . . . , Am} of E has an independent transversal I ⊆ E
with the bijection φ : {A0, . . . , Am} → I as in the definition, then for any
subset J ⊆ {0, . . . ,m},

rkM

(⋃
j∈J

Aj

)
≥ rkM{φ(Aj) : j ∈ J} = |{φ(Aj) : j ∈ J}| = |J |.

Conversely, assume that (4.1) holds. If all sets Aj = {aj} are singletons,
then {aj : j ∈ {0, . . . ,m}} is the required transversal. Thus we may assume,
without loss of generality, that |A0| ≥ 2. We will show that for some element
x of A0, the family {A0\{x}, A1, . . . , Am} satisfies (4.1). By deleting the
elements from each set in the family until remaining only singletons, the
proof is finished.
Assume that no such element x exists. Then if x1 and x2 are distinct elements
of A0, there are nonempty subsets J1 and J2 of {1, . . . , n} such that

rkM

(
(A0\{xi}) ∪

⋃
j∈Ji

Aj

)
< |Ji|+ 1
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for i = 1, 2. By submodularity,

|J1|+ |J2| ≥ rkM

(
(A0\{x1}) ∪

⋃
j∈J1

Aj

)
+ rkM

(
(A0\{x2}) ∪

⋃
j∈J2

Aj

)

≥ rkM

(
(A0\{x1}) ∪

⋃
j∈J1

Aj ∪ (A0\{x2}) ∪
⋃
j∈J2

Aj

)

+ rkM

((
(A0\{x1}) ∪

⋃
j∈J1

Aj

)
∩

(
(A0\{x2}) ∪

⋃
j∈J2

Aj

))

≥ rkM

(
A0 ∪

⋃
j∈J1∪J2

Aj

)
+ rkM

( ⋃
j∈J1∩J2

Aj

)
≥ 1 + |J1 ∪ J2|+ |J1 ∩ J2| = 1 + |J1|+ |J2|,

contradiction.

Proposition 4.8 (Dragon Hall-Rado condition). Let M be a matroid on
E, and {A1, . . . , Am} a family of subsets of E. There is an independent
transversal I ⊆ E\{e} of {A1, . . . , Am} for every e ∈ E iff

rkM

(⋃
j∈J

Aj

)
≥ |J |+ 1, ∀ ∅ ( J ⊆ {1, . . . ,m}. (4.2)

When the condition (4.2) is satisfied, we say that {A1, . . . , Am} satisfy the
dragon Hall-Rado condition of M , or DHR(M) for short.

Proof. This follows from Rado’s theorem and the observation that indepen-
dent transversals I ⊆ E\{e} are the same as independent transversals of
{A1\{e}, . . . , Am\{e}}.

Theorem 4.9. Let {A1, . . . , Ad} be a collection of subsets of E, and M a
loopless matroid on E of rank d + 1. Let HA1 , . . . , HAd be matroids defined
in Proposition 3.17. Then

M ∧HA1 ∧ · · · ∧HAd = U1,E ⇐⇒ {A1, . . . , Ad} satisfy DHR(M).

Thus, we have∫
M

hA1(M) · · ·hAd(M) =

{
1 if {A1, . . . , Ad} satisfy DHR(M),

0 otherwise.
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Proof. For the first assertion, note that M ∧HS = TclM (S)(M) has a loop iff
rkM(S) = 1, and for the quotient f : M �M ∧HS, by Proposition 3.13,

{T ⊆ E : nf (T ) = 1} = {T ⊆ E : clM(T ) ⊇ S}.

For the necessity of the condition, if rkM

(⋃
j∈J Aj

)
≤ k for some J =

{j1, . . . , jk} ⊆ {1, . . . , d}, k > 0, then for M̃ := M ∧HAj1
∧ · · · ∧HAjk−1

we

have rkM̃

(⋃
j∈J Aj

)
≤ k − (k − 1) = 1, so that M

∧
j∈J HAj already has a

loop.
For sufficiency, we induct on d. The base case d = 1 is trivially satisfied.
Now we claim that if {A1, . . . , Ad} satisfy the dragon Hall-Rado condition

for M , then so does {A1, . . . , Ad−1} for M̃ := M ∧ HAd . For the sake of
contradiction, suppose rkM̃(A1 ∪ · · · ∪ Ak) ≤ k, then we must have had
rkM(A1 ∪ · · · ∪ Ak) = k + 1 with clM(A1 ∪ · · · ∪ Ak) ⊇ Ad. But then
rkM(A1 ∪ · · · ∪ Ak ∪ Ad) = k + 1, violating DHR(M).
For the second assertion, note that

∫
M
hA1(M) · · ·hAd(M) =

∫
ΣAn

hA1 · · ·hAd∩
∆M , and the unique loopless matroid U1,E of rank 1 on E defines the Bergman
class ∆U1,E

by ∆U1,E
(0) = 1, where 0 is the zero-dimensional cone of ΣAn , so

that
∫

ΣAn
∆U1,E

= 1.

Corollary 4.10. Let M be a loopless matroid on E of rank d+1. The volume
polynomial VP∇M(t) ∈ R[tF : F ∈ L≥2

M ] of A•∇(M) is

VP∇M(t) =
∑

(F1,...,Fd)

tF1 · · · tFd

where the sum is over ordered collections of nonempty flats F1, . . . , Fd satis-
fying DHR(M). Alternatively, we have

VP∇M(t) =
∑

{F d11 ,...,F
dk
k }

(
d

d1, . . . , dk

)
td1F1
· · · tdkFk

where the sum is over size d multisets
{
F d1

1 , . . . , F dk
k

}
of flats of M satisfying

DHR(M).

Example 4.11 (U3,4, continued). Consider the uniform matroid M = U3,4

of rank 3 on E = {1, 2, 3, 4}. By the previous remark, we substitute the vari-
ables hF of the defining ideal I ofA•∇(M) = R[h1, h2, h3, h4, h12, . . . , h34, h1234]/I
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by the partial differential operators ∂F = ∂
∂hF

and get a system

∂1ϕ = ∂2ϕ = ∂3ϕ = ∂4ϕ = 0

(∂1 − ∂12 − ∂13 − ∂14 + 2∂1234)(∂2 − ∂12 − ∂23 − ∂24 + 2∂1234)ϕ = · · · = 0

(∂12 − ∂1234)(∂13 − ∂1234)ϕ = · · · = 0

(∂1 − ∂12 − ∂13 − ∂14 + 2∂1234)(∂23 − ∂1234)ϕ = · · · = 0

of 4+15+6+12=37 partial differential equations. Solving this system yields

ϕ = C1ϕ1 + C2h12 + C3h13 + C4h14 + C5h23 + C6h24 + C7h34 + C8h1234 + C9,

where C1, . . . , C9 ∈ R and

ϕ1 = 2
∑

F,F ′∈LM\{∅}
F 6=F ′

hFhF ′ +
∑

F∈LM\{∅}

h2
F = VP∇M

is the volume polynomial VP∇M of A•∇(M) (up to a constant factor). The so-
lution space is a 9-dimensional space spanned by VP∇M and all of its partial
derivatives, which is isomorphic to A•∇(M). It is easy to see that every pair
(F1, F2) of flats F1, F2 of M of rank at least two satisfies DHR(M).

Remark. In [Eur20], an explicit formula for the volume polynomial VPM of
A•(M) is given as

VPM(t) =
∑

{F d11 ,...,F
dk
k }

(−1)d−k
(

d

d1, . . . , dk

)
·

·
k∏
i=1

(
di − 1∑i

j=1 dj − rkM(Fi)

)
µ
∑i
j=1 dj−rkM (Fi)(M |Fi+1/Fi)t

d1
F1
· · · tdkFk ,

where the sum is over size d multisets
{
F d1

1 , . . . , F dk
k

}
of flats of M .

4.2.2 Volume polynomials of matroids are Lorentzian

Lorentzian polynomials were introduced and studied in [BH19]. The property
to be Lorentzian is closely related to log-concavity. Lorentzian polynomials
generalize stable polynomials and volume polynomials in algebraic geometry.
Let {D1, . . . , Ds} be nef (ample) divisors on a projective K-variety X of
dimension d, and A(X) its Chow ring. Let

∫
X

: Ad(X) → R be the degree
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map obtained as the pushforward map along the structure map X → SpecK.
Then

volX

(
s∑
i=1

tiDi

)
:= lim

q→∞

dimKH
0(q
∑

i tiDi)

qd/d!
=

∫
X

(∑
i

tiDi

)d

is a (strictly) Lorentzian polynomial [BH19, Theorem 10.1]. As the simplicial
generators of A•∇(M) are pullbacks of nef divisors on ΣAn , we are motivated
to prove the volume polynomial of A•∇(M) to be Lorentzian.

Definition 4.4. A homogeneous polynomial f ∈ R[x1, . . . , xn] of degree d
is strictly Lorentzian if its support consists of all monomials in x of degree
d, all of its coefficients are positive, and any of its (d − 2)-th order par-
tial differentiation ∂i1 · · · ∂id−2

f has Hessian matrix with Lorentzian signature
(+,−,−, . . . ,−).

The set of strictly Lorentzian polynomials of degree d in n variables is de-
noted by L̊dn. By the continuity of differential operators, the set L̊dn is open in
the space of homogeneous degree d polynomials with respect to the product
topology.

Definition 4.5. A collection of points J ⊂ Zn≥0 is M-convex if for any
α, β ∈ J and i ∈ [n] with αi > βi there exists j ∈ [n] such that αj < βj and
α− ei + ej ∈ J .

Definition 4.6. A homogeneous polynomial f ∈ R[x1, . . . , xn] of degree d
with non-negative coefficients is Lorentzian if

1. the support of f is M-convex, and

2. the Hessian of ∂i1 · · · ∂id−2
f has at most one positive eigenvalue for any

choice of (d− 2)-th order partial differentiation.

We denote by Ldn the set of Lorentzian polynomials f ∈ R[x1, . . . , xn] of de-
gree d. The following theorem [BH19, Theorem 2.13] is proven by applying
a sequence of operations preserving Lorentzian property.

Theorem 4.12. The space L̊dn is contractible, and its closure contains Ldn.

It was shown in [BH19, Theorem 5.1] that the closure of L̊dn is exactly Ldn. In
other words, Lorentzian polynomials are polynomials that can be obtained
as a limit of strictly Lorentzian polynomials. We show next that the volume
polynomial VP∇M of a loopless matroid M is Lorentzian. First, we show that
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the dragon Hall-Rado condition description for the support of VP∇M implies
it to be M-convex, then we compute the signatures of the Hessian matrices
of partial derivatives of VP∇M .

Proposition 4.13. Let {F1, . . . , Fd} and {G1, . . . , Gd} be two multisets of
flats of a loopless matroid M such that both tF1 · · · tFd and tG1 · · · tGd are in
the support of VP∇M . If (without loss of generality) Gd is a flat which appears
more times in {G1, . . . , Gd} than it does in {F1, . . . , Fd}, then there exists
another flat Fm which appears more times in {F1, . . . , Fd} than it does in
{G1, . . . , Gd} such that tF1 · · · tFdtGd/tFm is in the support of VP∇M .

Proof. We borrow standard language from polymatroid theory. A nonempty
multiset of flats {A1, . . . , Ak} is called dependent if rkM(

⋃k
j=1Aj) ≤ k. The

condition to be in the support of VP∇M , the dragon Hall-Rado condition, is
equivalent to the independence of every nonempty subset. We claim that
the multiset of flats {F1, . . . , Fd, Gd} contains a unique minimally dependent
multiset of flats X, which we call a circuit. Notice that {F1, . . . , Fd, Gd} is
dependent, and any of its subset that is dependent contains Gd. The theo-
rem will follow from this claim because the circuit X is not fully contained
in {G1, . . . , Gd}, hence we can let Fm be any flat in X which appears more
times in {F1, . . . , Fd} than it does in {G1, . . . , Gd}.
To prove the claim, support to the contrary that {R1, . . . , Ra}, {S1, . . . , Sb}
are two distinct circuits which are subsets of {F1, . . . , Fd, Gd}. Let {T1, . . . , Tc} :=
{R1, . . . , Ra} ∩ {S1, . . . , Sb}. We claim that {T1, . . . , Tc} is dependent. Sup-
pose to the contrary that rkM(

⋃c
j=1 Tj) ≥ c + 1. Let R :=

⋃a
j=1 Rj and

S :=
⋃b
j=1 Sj. By assumption, we have rkM(R) = a and rkM(S) = b. Sub-

modularity gives that

rkM(R ∪ S) ≤ rkM(R) + rkM(S)− rkM(R ∩ S) = a+ b− rkM(R ∩ S)

≤ a+ b− rkM(
c⋃
j=1

Tj) ≤ a+ b− c− 1.

Without loss of generality, assume that Gd = Ra = Sb = Tc. We have that
R =

⋃a−1
j=1 Rj and S =

⋃b−1
j=1 Sj, otherwise {R1, . . . , Ra−1} and {S1, . . . , Sb−1}

would both be dependent in {F1, . . . , Fd}. Therefore, the union of elements
in {R1, . . . , Ra−1, S1, . . . , Sb−1}\{T1, . . . , Tc−1} is R ∪ S and

|{R1, . . . , Ra−1, S1, . . . , Sb−1}\{T1, . . . , Tc−1}| = (a−1)+(b−1)−(c−1) = a+b−c−1.

But we have calculated rkM(R ∪ S) ≤ a + b − c − 1, therefore the sub-
set {R1, . . . , Ra−1, S1, . . . , Sb−1}\{T1, . . . , Tc−1} of {F1, . . . , Fd} is dependent,
contradiction.
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Theorem 4.14. The volume polynomial VP∇M ∈ R[tF : F ∈ L≥2
M ] of a

loopless matroid M is Lorentzian.

Proof. Let M be a loopless matroid of rank r = d + 1. There is nothing to
prove if d = 1, so we assume d ≥ 2. The support of VP∇M is M-convex by the
previous proposition. Observe that for a flat G of rank at least 2, we have

∂

∂tG
VP∇M(t) = d

∫
M

hG

( ∑
F∈L≥2

M

tFhF

)d−1

= d

∫
TG(M)

( ∑
F∈L≥2

M

tFhclTG(M)(F )

)d−1

.

Now, suppose {F1, . . . , Fd−2} is a multiset of size d− 2 consisting of flats of
M with at least 2. We may assume that {F1, . . . , Fd−2} satisfies DHR(M)
because otherwise ∂tF1 · · · ∂tFd−2

VP∇M ≡ 0. One computes that

∂tF1 · · · ∂tFd−2
VPM(t) =

d!

2

∫
M ′

( ∑
F∈L≥2

M

tFhclM′ (F )

)2

,

where M ′ = M ∧ HF1 ∧ · · · ∧ HFd−2
is a loopless matroid of rank 3. By

[BH19, Theorem 2.10], if f ∈ R[x1, . . . , xn] is Lorentzian, then so is f(Ax) ∈
R[x1, . . . , xm] for any n×m matrix A with non-negative entries. So it suffices
to check that VP∇M ′ is Lorentzian. For any loopless matroid M ′ of rank 3, the
degree 1 part A1

∇(M) of its Chow ring has the simplicial basis {hE} ∪ {hF :
rkM ′(F ) = 2}. Noting that by Theorem 4.9,

∫
M ′
hGhG′ = 1 if G 6= G′ or

G = G′ = E, and 0 otherwise, the Hessian of the quadratic form VP∇M ′ is
two time the matrix

1 1 1 · · · 1
1 0 1 · · · 1

1 1
. . . . . .

...
...

...
. . . . . . 1

1 1 · · · 1 0

 , which reduces to


1
−1

. . .

−1


by symmetric Gaußian elimination.

4.2.3 Hodge-Riemann relations for Lorentzian polyno-
mials

In [BH19, §4], it was proven that Lorentzian polynomials satisfy a formal
version of the Hodge-Riemann relations. It provides a key step for the induc-
tion to show the Hodge-Riemann relations for the Chow rings of matroids.
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First, we consider a subclass of Lorentzian polynomials.

Definition 4.7. Let H = {z ∈ C : Im(z) > 0} denote the open upper half
of the complex plane. A polynomial f ∈ R[x1, · · · , xn] is stable provided
that either f ≡ 0 or f(z) 6= 0 for any z ∈ H n. We denote by Sdn the set of
degree d homogeneous stable polynomials in n variables with non-negative
coefficients.

We refer to [BBL09; Wag11] for stable polynomials. It follows from Hurwitz’s
theorem in complex analysis that the set Sdn is closed in the space of degree d
homogeneous polynomials in n variables. We say polynomials in the interior
S̊dn of Sdn to be strictly stable. We denote by Hf := (∂i∂jf)i,j the Hessian of f .

Lemma 4.15. A polynomial f ∈ R[x1, . . . , xn] is stable iff for all v ∈ Rn
and u ∈ Rn>0, the univariable polynomial f(v + ut) has only real roots.

Proof. Since H n = {v + ut : v ∈ Rn,u ∈ Rn>0, t ∈ H }, the result follows.

Lemma 4.16. A homogeneous quadratic polynomial with positive coefficients
is strictly Lorentzian iff it is strictly stable.

Proof. Let f be a strictly Lorentzian quadratic polynomial. Since all entries
of Hf are positive, u>Hfu > 0 for any nonzero u ∈ Rn≥0. By Cauchy’s
interlacing theorem, for any v ∈ Rn not parallel to u, the restriction of
Hf to the plane spanned by u,v has signature (+,−). It follows that the
discriminant of the univariable polynomial 1

2
f(xu− v) satisfies

(u>Hfv)2 − (u>Hfu)(v>Hfv) = − det

(
u>Hfu u>Hfv
u>Hfv v>Hfv

)
> 0,

hence 1
2
f(xu−v) has two distinct real roots, which is equivalent to the con-

dition of being strictly Lorentzian.
Conversely, if the quadratic homogeneous polynomial f with positive coeffi-
cients is strictly stable, then there is some u ∈ Rn>0 such that for any v ∈ Rn
not parallel to u, the univariable polynomial 1

2
f(xu−v) has two distinct real

roots, then (u>Hfu)(v>Hfv) − (u>Hfv)2 < 0. Therefore, Hf is negative
definite on the hyperplane {v ∈ Rn : u>Hfv = 0}. Since u>Hfu > 0 as
u ∈ Rn>0, Hf has the Lorentz signature.

Proposition 4.17. Any polynomial in S̊dn is strictly Lorentzian.



4.2. THE VOLUME POLYNOMIAL 65

Proof. When d = 2, the statement follows from Lemma 4.16. In general,
homogeneous strictly stable polynomials are strictly Lorentzian, since ∂i is
an open map sending Sdn to Sd−1

n by the open mapping theorem in functional
analysis.

Now let f ∈ R[x1, . . . , xn] be a nonzero degree d ≥ 2 homogeneous poly-
nomial with non-negative coefficients. The following is an analog of the
Hodge-Riemann relations for homogeneous stable polynomials.

Proposition 4.18. If f is in Sdn\{0}, then Hf has exactly one positive eigen-

value for all x ∈ Rn>0. Moreover, if f is in S̊dn, then Hf (x) is nonsingular for
all x ∈ Rn>0.

Proof. Fix a vector x ∈ Rn>0. The quadratic polynomial

z>Hf (x)z =
∑

1≤i,j≤n

zizj∂i∂jf(x)

in z has Hessian 2Hf (x). By Lemma 4.16 and the fact 1>Hf (x)1 > 0,
Hf (x) has exactly one positive eigenvalue if z>Hf (x)z is stable. One sees
that z>Hf (x)z is the quadratic part of the stable polynomial f(z+x), hence
it is stable because it can be obtained from f(z+x) by a sequence of homog-
enization, differentiation, inversion and specialization (see [BBL09, Lemma
4.16]), which are operations preserving stability, see [Wag11, Lemma 2.4] and
[BBL09, Theorem 4.5].
Moreover, if f is strictly stable, then fε = f ± ε(xd1 + · · · + xdn) is sta-
ble for all sufficiently small positive ε. Therefore, by above, the matrix
Hfε(x) = Hf (x) ± d(d − 1)εdiag(xd−2

1 , . . . , xd−2
n ) has exactly one positive

eigenvalue for all sufficiently small ε > 0, hence Hf (x) is nonsigular.

The following is an analog of Lefschetz property for Lorentzian polynomials.

Lemma 4.19. If H∂if (x) has exactly one positive eigenvalue for every i ∈ [n]
and x ∈ Rn>0, then

ker Hf (x) =
n⋂
i=1

ker H∂if (x).

Proof. We may suppose d ≥ 3. Fix x ∈ Rn>0, and write Hf for Hf (x). By
Euler’s homogeneous function theorem,

(d− 2)Hf =
n∑
i=1

xiH∂if .
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It follows that the kernel of Hf contains the intersection of the kernels of
H∂if .
For the other inclusion, let z ∈ ker Hf . By Euler’s homogeneous function
theorem, (d−2)e>i Hf = x>H∂if , hence x>H∂ifz = 0. We have x>H∂ifx > 0
because ∂if is nonzero and has nonnegative coefficients. It follows that H∂if

is negative on the kernel of x>H∂if . In particular,

z>H∂ifz ≤ 0, with equality iff H∂ifz = 0.

To conclude, we write zero as the positive linear combination

0 = (d− 2)
(
z>Hfz

)
=

n∑
i=1

xi
(
z>H∂ifz

)
.

Since every summand in the right-hand side is non-positive, we must have
z>H∂ifz = 0 for every i, and hence H∂ifz = 0 for every i.

We are now ready to generalize the Hodge-Riemann relations to Lorentzian
polynomials.

Theorem 4.20. Let f be a nonzero homogeneous polynomial in R[x1, . . . , xn]
of degree d ≥ 2.

(1) If f is strictly Lorentzian, then Hf (x) is nonsingular for all x ∈ Rn>0.

(2) If f is Lorentzian, then Hf (x) has exactly one positive eigenvalue for
x ∈ Rn>0.

Proof. By Theorem 4.12, Ldn is in the closure of L̊dn. Therefore, we may sup-
pose f ∈ L̊dn in (2). We prove (1) and (2) simultaneously by induction on
d under this assumption. The base case d = 2 is trivial. We suppose that
d ≥ 3 and that theorem holds for L̊d−1

n .
That (1) holds for L̊dn follows from induction and Lemma 4.19. Using Propo-
sition 4.18, we see that (2) holds for stable polynomials in L̊dn. Since L̊dn is
connected by Theorem 4.12, the continuity of eigenvalues and the validity of
(1) together implies (2).
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4.3 Kähler Package in Degree at most One

4.3.1 Hard Lefschetz property and Hodge-Riemann re-
lations

Definition 4.8. Let (A•,
∫

) be a Poincaré duality K-algebra of dimension
d with degree map

∫
. For ` ∈ A1 and 0 ≤ i ≤ bd

2
c, we define Li` to be the

Lefschetz operator

Li` : Ai → Ad−i, a 7→ `d−2ia,

and define Qi
` to be the Hodge-Riemann symmetric bilinear form

Qi
` : Ai × Ai → K, (x, y) 7→

∫
xy`d−2i.

We define the set of degree i primitive classes of ` to be

P i
` :=

{
x ∈ Ai : x`d−2i+1 = 0

}
.

Definition 4.9. Let (A•,
∫

) be a Poincaré duality R-algebra of dimension d
and ` ∈ A1. For 0 ≤ i ≤ bd

2
c, we say that (A•,

∫
) satisfies

• (HLi`) if Li` induces an isomorphism between Ai and Ad−i, and

• (HRi
`) if the symmetric form (−1)iQi

` is positive definite when restrict
to P i

` .

Moreover, for K a convex cone in A1, we say that (A•,
∫
,K) satisfies the hard

Lefschetz property (HLiK), resp. the Hodge-Riemann relation (HRi
K), in de-

gree i if A• satisfies (HLi`), resp. (HRi
`), for all ` ∈ K. We will write (HL≤i) to

mean hard Lefschetz property in degree at most i, and likewise for (HR≤i).
The properties (PD), (HL) and (HR) together are called the Kähler package
for a graded ring A•.

Proposition 4.21. Let (A•,
∫
,K) be a Poincaré duality algebra which satis-

fies (HLiK) for a convex cone K in A1. Suppose that (A•,
∫

) satisfies (HRi
`)

for some ` ∈ K. Then A• satisfies (HRi
K).

Proof. Let `′ ∈ K, and l(t) = t` + (1 − t)`′ for t ∈ [0, 1] be a line segment
connecting ` and `′. By convexity of K, every point on l is in K. If the
signature of the bilinear pairing Qi

l(t) changes along l(t) starting at `, then it

must degenerate at some point l(t0) for t0 ∈ [0, 1], but this violates (HLiK).
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It is easy to check that the tensor product of Poincaré duality algebras is also
a Poincaré duality algebra. Remark that this is the analogue of the Künnuth
formula in algebraic topology.

Proposition 4.22. Let (A•,
∫
A

) and (B•,
∫
B

) be Poincaré duality algebras of
dimension dA and dB over a common field K. Then their tensor product

(A⊗B)• =
⊕
•

(⊕
i+j=•

Ai ⊗Bj

)

is a Poincaré duality algebra of dimension dA + dB with degree map∫
A⊗B

: (A⊗B)dA+dB = AdA ⊗BdB → K, a⊗ b 7→
∫
A

a ·
∫
B

b.

We now show how the properties (HL) and (HR) behave under tensor prod-
ucts and transports.

Proposition 4.23. Let (A•,
∫
A

) and (B•,
∫
B

) be Poincaré duality algebras of

dimension dA ≥ 1 and dB ≥ 1. Suppose that A• and B• satisfy (HR≤1
`A

) and

(HR≤1
`B

), respectively, then ((A⊗B)•,
∫
A⊗B) satisfies (HR≤1

`A⊗1+1⊗`B).

Proof. Set ` := `A ⊗ 1 + 1 ⊗ `B and d := dA + dB. First, by the properties
(HR0

`A
) and (HR0

`B
) of A• and B•, respectively, we have

∫
A
`dAA > 0 and∫

B
`dBB > 0, therefore,

∫
A⊗B

`d =

∫
A⊗B

d∑
k=1

(
d

k

)(
`kA ⊗ `d−kB

)
=

(
d

dA

)∫
A

`dAA ·
∫
B

`dBB > 0,

hence (A⊗B)• satisfies (HR0
`).

Now let v1, . . . , vm and w1, . . . , wn be orthonormal bases for P 1
`A

and P 1
`B

,
respectively. Then

A1 ∼= 〈`A〉 ⊕
m⊕
i=1

〈vi〉 and B1 ∼= 〈`B〉 ⊕
n⊕
i=1

〈wi〉.

Noting that (A⊗B)• is a Poincaré duality algebra of dimension d, we expand

`d−2 = (`A ⊗ 1 + 1⊗ `B)d−2 =
d−2∑
i=0

(
d− 2

i

)(
`iA ⊗ `d−i−2

B

)
.
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The symmetric matrix for Q1
` with respect to the above basis is given by

Q1
`(a, b) =



−
(
d−2
dA

)
a = b = vi ⊗ 1

−
(
d−2
dB

)
a = b = 1⊗ wj

λ
(
d−2
dB

)
a = b = `A ⊗ 1

λ
(
d−2
dA

)
a = b = 1⊗ `B

λ
(
d−2
dA−1

)
a = `A ⊗ 1, b = 1⊗ `B or a = 1⊗ `B, b = `A ⊗ 1

0 otherwise

where λ :=
∫
A
`dAA ·

∫
B
`dBB . So the matrix Q1

`(a, b) is a block matrix comprised
of 3 blocks. By (HR1

`A
) and (HR1

`B
), the first two blocks are negative identity

matrices induced by {vi ⊗ 1} × {vi ⊗ 1} and {1⊗wj} × {1⊗wj}. The third
and only nontrivial block is induced by {`A ⊗ 1, 1⊗ `B} × {`A ⊗ 1, 1⊗ `B},
which gives the 2× 2 matrix

M = λ

[ (
d−2
dA−2

) (
d−2
dA−1

)(
d−2
dA−1

) (
d−2
dA

) ] .
One see from the log-concavity of binomial coefficients that det(M) < 0, and
hence M has signature (+,−). We conclude that Q1

`(a, b) is nondegenerate
and has exactly one positive eigenvalue completing the proof.

Proposition 4.24. Let (A• = R[x1, . . . , xs]/I,
∫

) be a Poincaré duality al-
gebra of dimension d, and let ` ∈ A1 be a positive linear combination of
{x1, . . . , xs}. Denote by `k the image of ` in A•/Ann(xk). For 0 ≤ i ≤ bd−1

2
c,

if (A•/Ann(xk),
∫
xk

) satisfies (HRi
`k

) for every k = 1, . . . , s, then (A•,
∫

) sat-

isfies (HLi`).

Proof. Let ` =
∑s

k=1 ckxk with ck ∈ R>0, and suppose `d−2if = 0 for some
f ∈ Ai. We will show that f = 0. Let fk be the image of f in A•/Ann(xk). As
`d−2if = 0, we have `d−2i

k fk = 0. Because A•/Ann(xk) is a Poincaré duality
algebra of dimension d − 1, we conclude that fk ∈ P i

`k
. By the definition of∫

xk
, we have

0 =

∫
`d−2if 2 =

∫ (∑
k

ckxk

)
`d−2i−1f 2 =

∑
k

ck

(∫
xk

`d−2i−1
k f 2

k

)
,

where (−1)i
∫
xk
`d−2i−1
k f 2

k ≥ 0 ∀k by (HRi
`k

). Moreover, as (−1)iQi
`k

is positive

definite on P i
`k

, we conclude each fk to be 0, that is, xkf = 0 for all k =
1, . . . , s. Since {x1, . . . , xs} generate A•, the Poincaré duality property of A•

implies that if f 6= 0 then there exists a polynomial g(x) of degree d− i such
that

∫
g(x)f 6= 0, and hence we conclude that f = 0.
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Let Σ be a d-dimensional smooth rational fan in NR for a lattice N , and
let ρ ∈ Σ(1) be a ray. Denote by star(ρ,Σ)ρ the image of star(ρ,Σ) under
the projection NR � NR/span(ρ), which is a (d − 1)-dimensional fan in
NR/span(ρ). By definition of the Chow ring, there is a surjection

A•(Σ) � A•(star(ρ,Σ)ρ), xρ′ 7→

{
xρ′ if ρ′ and ρ form a cone in Σ,

0 otherwise.

for each ρ′ 6= ρ, where ρ′ is the image of ρ′ under the projection NR �
NR/span(ρ). As 〈xρ′ | ρ′ and ρ do not form a cone in Σ〉 ⊆ AnnA•(Σ)(xρ), we
get an induced map

πρ : A•(star(ρ,Σ)ρ) � A•(Σ)/Ann(xρ).

We have the following criterion for when the map πρ is an isomorphism.

Proposition 4.25. Suppose Σ satisfies MWd(Σ) ∼= R, and suppose fur-
ther that the Chow ring A•(Σ) is a Poincaré duality algebra of dimension
d with the degree map

∫
Σ

(for any choice of the fundamental class ∆Σ).
Then the map πρ : A•(star(ρ,Σ)ρ) � A•(Σ)/Ann(xρ) is an isomorphism iff
A•(star(ρ,Σ)ρ) is a Poincaré duality algebra.

Proof. For the “if” part note that a surjective map of Poincaré duality alge-
bras of the same dimension is an isomorphism: If ϕ : A• � B• is a surjection
of Poincaré duality algebras of the same dimension d, then kerϕ 6= 〈0〉 im-
plies that kerϕ ⊇ Ad, so that B• ∼= A•/I is a Poincaré duality algebra of
dimension at most d− 1.
The “only if” part follows from Proposition 4.1.

4.3.2 Kähler package in degree at most one for ma-
troids

Now we will show that the Chow rings of matroids satisfy the hard Lefschetz
property and the Hodge-Riemann relations in degree at most 1, which is the
key part to prove the Heron-Rota-Welsh conjecture. Recall that we have the
pullback map ι∗M : A•(ΣAn) � A•(M) via xS 7→ xS if S is a proper flat of M
and 0 otherwise.

Definition 4.10. Let M be a loopless matroid on E. a divisor D ∈ A1(M) is
combinatorially nef (resp. ample) if it is a pullback of a nef (ample) divisor



4.3. KÄHLER PACKAGE IN DEGREE AT MOST ONE 71

on ΣAn . Explicitly, by Theorem 3.8, a divisor D =
∑

F∈LM\{∅,E} cFxF is

combinatorially nef (resp. ample) if there exists a function a(·) : 2E → Z
with a∅ = aE = 0 such that aF = cF ∀F ∈ LM and

aA + aB ≥ aA∪B + aA∩B for every A,B ⊆ E

(resp. with strict inequality whenever A,B incomparable).
The nef (ample) divisors form a cone in A1(M) called the combinatorial am-
ple (nef) cone, denoted by KM (KM).

Proposition 4.26. A combinatorially nef divisor D ∈ A1(M) is effective.
In particular, a combinatorially ample divisor D ∈ A1(M) can be written as
a positive linear combination of xF , F ∈ LM\{∅, E}.

Proof. As a combinatorially nef (ample) divisor D ∈ A1(M) is a pullback of
a nef (ample) divisor on ΣAn , this statement follows from Corollary 3.4.

Let K∇M be the interior of the cone generated by the simplicial generators of
A•∇(M). It is a subcone of KM since the simplicial generators are nef by con-
struction. In light of Proposition 4.21, we need to establish (HR1

`) for some
divisor ` ∈ KM in order to prove the property (HR1

KM
) of A•(M). This is pro-

vided by the Hodge-Riemann relations of the Lorentzian polynomial VP∇M(t).

Lemma 4.27. Let M be a loopless matroid of rank r = d + 1 ≥ 2. For any
` ∈ K∇M , we have

∫
M
`d > 0, and when r = d+1 ≥ 3, the form Q1

` has exactly
one positive eigenvalue.

Proof. The statement
∫
M
`d > 0 follows from the dragon Hall-Rado formula

in Corollary 4.10. The second statement follows from Theorem 4.14 and
Theorem 4.20, because for ` =

∑
tihi, the matrix of Q1

` is d(d− 1) times the
Hessian of VP∇M(t).

The following lemma provides the key step to reduce the rank in the induc-
tion. It underlies the Hopf algebraic structure for the lattice of flats of a
matroid.

Lemma 4.28. Let M be a loopless matroid, and F a nonempty proper flat
of M . Let ρF be the ray corresponding to F in the Bergman fan ΣM of M .
We have

star(ρF ,ΣM)ρF
∼= ΣM |F × ΣM/F , (4.3)
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and consequently an isomorphism of Poincaré duality algebras

A•(M)/Ann(xF ) ∼= (A(M |F )⊗ A(M/F ))• (4.4)

such that if ` ∈ KM then its image in A•(M)/Ann(xF ) is in (KM |F ⊗ 1) ⊕
(1⊗ KM/F ).

Proof. A cone of ΣM is in star(ρF ,ΣM) iff it corresponds to a flag containing
F . By Corollary 2.4, any such flag naturally factors as the concatenation of
two flags, one with maximal element strictly contained in F , and the other
with minimal element F . This geometrically corresponds to the factorization
of fans in (4.3). For (4.4), first note that M |F and M/F are loopless since F
is a flat. Then (4.4) follows from Proposition 4.22 and Proposition 4.25 and
the fact that A•(Σ×Σ′) ∼= (A(Σ)⊗A(Σ′))• for rational fans Σ,Σ′. The last
statement follows from the fact that the restriction of submodular functions
on lattice remain submodular under restriction to intervals in the lattice.

Theorem 4.29. The Chow ring of a matroid (A•(M),
∫
M
,KM) satisfies

(HL≤1
KM

) and (HR≤1
KM

).

Proof. We proceed by induction on the rank of the matroid M . For rank
1 matroids, the stated properties are trivially satisfied. Let M be a rank 2
matroid. By Proposition 4.26, any nef divisor ` ∈ KM is effective, that is,
there are non-negative numbers ca ≥ 0 such that ` =

∑
a∈A(M) caxa. Then∫

M
` =

∑
a∈A(M) ca > 0, which implies (HL0

KM
) and (HR0

KM
) for M .

Let M now be a loopless matroid of rank r = d + 1 ≥ 3 on a ground set
E. Observe that the property (HR0

KM
) holds iff

∫
M
`d > 0 for all ` ∈ KM ,

and it implies (HL0
KM

). And given (HL1
`) and

∫
M
`d > 0, the property (HR1

`)
holds iff Q1

` has exactly one positive eigenvalue. Combined with Lemma 4.27
and Proposition 4.21, these facts imply that proving (HL≤1

KM
) is sufficient to

establish (HR≤1
KM

). By Proposition 4.26, any element ` ∈ KM can be written
as a positive linear combination of {xF : F ∈ LM\{∅, E}}. Therefore, by
Proposition 4.24, to establish (HL≤1

KM
) (except (HL1

KM
) in the case of rk(M) =

3, which is satisfied as L1
` is the identity function for any `), it suffices in

turn to prove (HR≤1
KM

) for A•(M)/Ann(xF ) for every nonempty proper flat
F . Finally, A•(M)/Ann(xF ) ∼= (A(M |F )⊗A(M/F ))• by Lemma 4.28, so by
the induction hypothesis and Proposition 4.23, the proof is complete.
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4.4 Log-Concavity

Let M be a loopless matroid of rank r = d + 1 on E = {0, . . . , n}. Recall
that the characteristic polynomial of M is

χM(q) =
∑
F∈LM

µM(∅, F )qr−rk(F ) =
r∑

k=0

wk(M)qr−k,

where the Whitney numbers wk(M) satisfy (−1)kwk(M) > 0.
Because χM(1) =

∑
F∈LM µM(∅, F ) = 0, we define the reduced characteristic

polynomial of M to be

χM(q) := χM(q)/(q − 1).

We define a sequence of integers µ0(M), . . . , µr−1(M) by the equality

χM(q) =
r−1∑
k=0

(−1)kµk(M)qr−k.

By comparing the coefficients, we have

|wk(M)| = (−1)kwk(M) = µk(M) + µk−1(M) for 0 ≤ k ≤ r

by convention µ−1(M) = µr(M) = 0, and

µk(M) = (−1)k(w0(M) + w1(M) + · · ·+ wk(M)).

We will show that the Kähler package of A•(M) in degree at most 1 implies
the log-concavity of µk(M). Because the convolution of two log-concave
sequences is log-concave, we have then the log-concavity of |wk(M)|.

The following lattice theoretic theorem can be found e.g. in [Sta11, Corol-
lary 3.9.3].

Lemma 4.30 (Weisner’s theorem). Let F be a flat of a loopless matroid M ,
and let i ∈ F be an element. Then

µM(∅, F ) = −
∑

a/∈F ′lF

µM(∅, F ′),

where F ′lF denotes that the flat F ′ ∈ LM is covered by F , i.e. F ′ ⊆ F and
rkM(F ) = rkM(F ′) + 1.
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Lemma 4.31. Let a ∈ E. The coefficients of χM(q) are given by

µk(M) = (−1)k
∑

a/∈F∈LM
rkM (F )=k

µM(∅, F ) = (−1)k+1
∑

a∈F∈LM
rkM (F )=k+1

µM(∅, F ). (4.5)

Proof. We begin by proving the second equality by applying Weisner’s the-
orem ∑

a∈F∈LM
rkM (F )=k+1

µM(∅, F ) = −
∑

a∈F∈LM
rkM (F )=k+1

∑
a/∈F ′lF

µM(∅, F ′)

=−
∑

a/∈F∈LM
rkM (F )=k

∑
a∈FmF ′

µM(∅, F ′) = −
∑

a/∈F ′∈LM
rkM (F ′)=k

µM(∅, F ′)

where the last equality follows from the fact that for F ′ not containing a,
there is a unique flat F with rkM(F ) = rkM(F ′) + 1 and a ∈ F .
The theorem is true for k = 0. It now follows by induction using∑

F∈LM
rkM (F )=k

µM(∅, F ) = (−1)kwk(M) = µk(M) + µk−1(M).

Now, we give a combinatorial interpretation for the coefficients µk(M).

Definition 4.11. Let F = (∅ ( F1 ( · · · ( Fk ( E) be a k-step flag of
nonempty proper flats of M .

• The flag F is initial if rkM(Fm) = m for all indices m.

• The flag F is descending if min(F1) > · · · > min(Fk) > 0.

We write Dk(M) for the set of initial descending k-step flags of nonempty
proper flats of M .

Theorem 4.32. For every positive integer k < r, we have µk(M) = |Dk(M)|.

Proof. By iterative application of Weisner’s Theorem on (4.5), we have

µk = (−1)k
∑

0/∈Fk∈LM
rkM (Fk)=k

µM(∅, Fk) = (−1)k−1
∑

a/∈Fk∈LM
rkM (Fk)=k

∑
minFk /∈Fk−1lFk

µM(∅, Fk−1)

= · · · = −
∑

a/∈Fk∈LM
rkM (Fk)=k

∑
minFk /∈Fk−1lFk

· · ·
∑

minF2 /∈F1lF2

(−1) = |Dk(M)|.
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For any i ∈ E, we denote

α :=
∑
i∈F

xF ∈ A1(M), β :=
∑
i/∈F

xF ∈ A1(M).

Both α and β are independent of the choice of i. For a flag F = (∅ ( F1 (
· · · ( Fk ( E) of flats in M we write xF := xF1 · · ·xFk .

The elements α, β ∈ A1(M) are nef: For a representation α =
∑

i∈F xF , the
function a(·) : 2E → Z, aF = 1 if i ∈ F 6= E and 0 otherwise is easy to
check to be submodular and α is the pullback of the nef divisor

∑
aFxF on

A•(ΣAn). For β =
∑

i/∈F xF , it is the pullback of the nef divisor
∑
bFxF on

A•(ΣAn) where bF = 1 if i /∈ F and 0 otherwise.

Lemma 4.33. Let F = (∅ ( F1 ( · · · ( Fk ( E) be any flag of nonempty
proper flats of M . If the flag F is initial, then

xFα
d−k = αd ∈ Ad(M).

If F is not initial, then xFα
d−k = 0.

Proof. First note that for any element i not in a nonempty proper flat F ,

xFα = xF
∑

G⊇F∪{i}

xG ∈ A•(M).

If the flag F is not initial, we prove by descending induction on k. If k = d−1,
then rkM(Fk) = d so the product is zero. For general k, choose an element
i /∈ Fk. Then

xF1 · · · xFkαd−k = xF1 · · ·xFk

 ∑
G⊇Fk∪{i}

xG

αd−(k+1)

which is zero by the induction hypothesis for k + 1 applied to each of the
terms in the expansion.
For an initial flag F , we prove by ascending induction on k. When k = 1,
the flat F1 ∈ A(M) is an atom. Choose an element i ∈ F1 and we have

αd =

(∑
i∈G

xG

)
αd−1 = xF1α

d−1.
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For general k, choose an element i ∈ Fk\Fk−1. By the induction hypothesis,

αd = xF1 · · ·xFk−1
αd−(k−1) = xF1 · · ·xFk−1

 ∑
G⊇Fk−1∪{i}

xG

αd−k.

For any G other than Fk, the flag F1 ( · · · ( Fk−1 ( FG is not initial, hence
it contributes a zero in the sum. Therefore, we get αd = xF1 · · ·xFkαd−k.

In particular, αd = xF1 · · ·xFd for any complete flag of nonempty proper flats
F1 ( · · · ( Fd and

∫
M
αd = 1.

Lemma 4.34. For every positive integer k ≤ d, we have

βk =
∑
F

xF ∈ A•(M),

where the sum is over all descending k-step flags F of nonempty proper flats
of M .

Proof. We prove by induction on k. When k = 1,
∑

0/∈F xF = β by the
definition. In the general case, we use the induction hypothesis for k to write

βk+1 =
∑
F

βxF ,

where the sum is over all descending k-step flags F of nonempty proper flats
of M . For each of the summands βxF , write F = (F1 ( · · · ( Fk) and set
iF := minF1.

βxF =

∑
iF /∈F

xF

xF =
∑
F ′

xF ′

where the last sum is over all descending flags of nonempty proper flats of
M of the form F ′ = (F ( F1 ( · · · ( Fk). This completes the induction.

Combining Theorem 4.32, Lemma 4.33 and Lemma 4.34, we see that the
coefficients of the reduced characteristic polynomial of M are given by the
degrees of the products αd−kβk.

Theorem 4.35. For every 0 ≤ k ≤ d, we have

µk(M) =

∫
M

αd−kβk.
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Now we can apply the hard Lefschetz property and Hodge-Riemann relations
in degree at most 1 to prove the log-concavity of µk(M), and hence the log-
concavity of wk(M) and fk(M).

Lemma 4.36. Let `1, `2 ∈ A1(M). If `2 is nef, then(∫
M

`2
1`
d−2
2

)(∫
M

`2
2`
d−2
2

)
≤
(∫

M

`1`2`
d−2
2

)2

.

Proof. Suppose first that `2 is ample. By Theorem 4.29, A•(M) satisfies
(HL≤1

`2
), so we obtain a decomposition A1(M) ∼= 〈`2〉⊕P 1

`2
that is orthogonal

with respect to the Hodge-Riemann form Q1
`2

. By (HR≤1
`2

), Q1
`2

is negative
definite on P 1

`2
and positive definite on 〈`2〉. Therefore, the restriction of Q1

`2

to the subspace 〈`1, `2〉 ⊆ A1(M) is neither positive nor negative definite, so(∫
M

`2
1`
d−2
2

)(∫
M

`2
2`
d−2
2

)
< 0 ≤

(∫
M

`1`2`
d−2
2

)2

.

If `2 is merely nef rather than ample, then for any ample element `, the class
`2(t) := `2 + t` is ample for all t > 0. An ample ` exists as the subcone
K∇M ⊆ KM is nonempty. Now, taking a limit as t→ 0 in the inequality(∫

M

`2
1`2(t)d−2

)(∫
M

`2(t)2`2(t)d−2

)
<

(∫
M

`1`2(t)`2(t)d−2

)2

yields the desired inequality.

Corollary 4.37. For each 0 < k < d,

µk−1(M)µk+1(M) ≤ µk(M)2.

Proof. We prove by induction on rk(M). When k < d − 1, consider the
truncation TE(M). Recall that the lattice of flats of TE(M) is obtained from
LM by removing all flats of rank d. Therefore Dl(M) = Dl(TE(M)), and by
Theorem 4.32, µl(M) = µl(TE(M)) for all l < d. The induction hypothesis
applied to TE(M) implies the inequality.
Now, consider k = d− 1. By Theorem 4.35, µk(M) =

∫
M
αd−kβk. Therefore,

the desired inequality is(∫
M

α2βd−2

)(∫
M

β2βd−2

)
≤
(∫

M

αββd−2

)2

.

Since α and β are nef, this inequality holds by Lemma 4.36.
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As a result, the Heron-Rota-Welsh conjecture and the Mason’s conjecture (i)
(Conjecture 2.16 and 2.18 (i)) are proven.

Corollary 4.38. For any loopless matroid M , the sequences (|wk(M)|)k and
(fk(M))k are log-concave and unimodal.

Example 4.39 (U3,4, continued). For the uniform matroid M = U3,4 on
E = {1, 2, 3, 4}, we have

χM(q) = q3 − 4q2 + 6q − 3 and χM(q) = q2 − 3q2 + 3.

The coefficients of χM(q) are exactly the degrees∫
M

α2 =

∫
M

(x1 + x12 + x13 + x14)(x2 + x12 + x23 + x24)

=

∫
M

x1x12 + x12(x1 + x12)

=

∫
M

x1x12 + x12(x3 + x23 + x24 − x14) =

∫
M

x1x12 = 1,∫
M

αβ =

∫
M

(x1 + x12 + x13 + x14)(x2 + x3 + x4 + x23 + x24 + x34)

=

∫
M

x2x12 + x3x13 + x4x14 = 3,∫
M

β2 =

∫
M

β(x2 + x3 + x4 + x23 + x24 + x34)

=

∫
M

∑
2/∈F

xF (x2 + x23 + x24) +
∑
3/∈F

xF (x3 + x34) +
∑
4/∈F

xFx4

=

∫
M

x3x23 + x4x24 + x4x34 = 3

of α2, αβ, β2, and are also equal to the cardinalities of D0(M) = {()},
D1(M) = {(2), (3), (4)} and D2(M) = {(3 ( 23), (4 ( 24), (4 ( 34)}.
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[BH19] Petter Brändén and June Huh. “Lorentzian polynomials”. In:
arXiv preprint arXiv:1902.03719 (2019) (cit. on pp. 60, 61, 63).

[Bir12] George D Birkhoff. “A determinant formula for the number of
ways of coloring a map”. In: The Annals of Mathematics 14.1/4
(1912), pp. 42–46 (cit. on p. 7).
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